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Glossary 

AC Alternating current  

ADRIANA ADvanced Reactor Initiative And Network Arrangement 

ALIP Annular linear induction pump 

ASR Automatic sodium release (to storage tank)  

CSP Concetrating Solar Power (using sodium as HTF) 

CFM Electromagnetic Conduction Flow Meters  

DC Direct current 

DuT Device under Test 

ECFM Eddy Current Flow Meter,  and Transient ECFM (TECFM) 

EMP Electromagnetic pump 

HTF Heat transfer Fluid  

I&C Instrumentation and Control 

ISIR In-Service Inspection & Repair 

ISS Interlock Safety System 

LIMCKA Liquid Metal Competence Center Karlsruhe 

LM Liquid metal  

KISS KIT Safety Information System 

KIT Karlsruhe Institute of Technology 

Na chemical symbol for sodium.  It is used as an abbreviation 

NADYNE French acronym for dynamic sodium 

NaK the chemical eutectic system: sodium-potassium alloy 

NI National Instruments (Company supplying sensors and I&C)  

PLC Programmable Logic Controller 

SWR Sodium-water reactions 

TC Thermocouple  

TUSHT French name of a high-temperature ultrasonic transducer 

UDV Ultrasonic Doppler Velocimetry  

 

Priming chamber: This tank is used to prime the pump used to fill the sodium system. It is filled with 

sodium from the storage tanks and is positioned above the level of the filling pump. 
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Attention 

 

This report has been written based on document Nos. [1] and [2] and comprises information gathered 

at KIT during the ATEFA, SOLTEC and KASOLA programmes.  

 

PREAMBLE 
 

The recommendations in this document take into account existing experiences at European 

laboratories operating liquid metal facilities, here focussed on sodium. In addition, experiences with 

sodium application in energy technology (concentrating solar power, CSP) are considered, for safety 

provisions during maintenance operations.  

KIT has long experiences originating from sodium fast reactors leading to the SMR type: SNR-300. Also 

lead, SBE and PbLi as well as GaInSn are used in different experimental facilities. Nowadays, research 

fields are high temperature materials qualification, CSP, AMTEC and target medium for accelerator 

technologies. The wider range allows a broad spreading of the technology and the implications with 

respect to design and safety provisions.  

HZDR operates different facility with lead alloys, GaInSn and the sodium loop NATAN (see section 7.4).  

IPUL experience mainly is based on the sodium facilities AMPERE and TESLA. 

1 PURPOSE 

The deliverable 2.3.2 comprises the experiences gained in the last 50 years in building and operation 

of liquid meatal facilities at KIT, CEA, HZDR and IPUL.  

Facilities using liquid metal high temperature heat carriers are labour-intensive and expensive 

equipment. Their operation is associated with a high level of safety and line-specific safety 

requirements. In such facilities, many systems, assemblies and hardware are original and their 

constructive performance is original.  

The high chemical activity and other features of alkali metals raise the additional difficulties of 

operating liquid metals systems.  

 Such systems are different by:  

 - leak tightness;      

 - the use of high-purity inert gases in such systems and, in many cases,  

    the equipment for the purification of gases;  

 - use of high purity alkali metals, as well as special equipment and methods for their treatment; 

-  use of special heaters in the loop;   

 - the presence of facilities for the selection and analysis of samples in order to determine the 

composition and purity of the heat carrier.      

The nature of these premises and devices is determined in accordance with the instructions of the 

installation category: the amount of liquid-metal coolant contained therein, the danger, the heat 

carrier's activity, as well as, to some extent, the maximum temperature accepted for the contour. In 
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order to increase the reliability it is desirable to duplicate individual units of installations, as well as 

power supply and heat carriers. In many cases, it is also necessary to develop a remote control, a 

programmed automatic start and stop of the facility, as well as automatic emergency protection.  

Despite of the widespread use of liquid-metal systems in laboratory and industrial installations, their 

elements, design and placement options are not systematized to this day. One of the reasons is that 

every facility might have different installation specifics in concepts using heat – transfer agent. 

Nevertheless, the basic concepts of liquid metal facilities and installations for different studies and 

exploitation are similar. The basic concept and main components of such an installation is shown in 

Figure 1.1. 

 

Figure 1.1 A typical basic layout of alkali metal contour (installation). 

  1 - supply tank; 2 - filter; 3- electromagnetic pump; 4 – cold trap; 5 – expansion tank; 6 – 

flow meter; 7 – heat exchanger; 8 – valves; 9 – level meters; 10 – pressure sensors; 11 – 

heaters, 12 – drainage, 13 – gas supply 
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Figure 1.2 TESLA (IPUL) layout of sodium metal contour with 2 electromagnetic pumps (EMP) and 

heating system. 

A specific layout of TESLA sodium facility at IPUL is presented in Figure 1.2. Thermocouple locations 

and the heating elements on the loop are identified. 
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At KIT sodium facilities were designed and built starting in 2013 and ending in 2020 with the set into 

operation of KASOLA. As a novelty, the SOLTEC [5] facilities were designed to provide a mobile high 

temperature facility for operation in standard laboratory environments.  

 

 

Figure 1.3 Sodium and GaInSn fleet of experimental facilities dedicated to thermo-fluid-dynamics, 

material qualification and system verification (status indicated by colour).  

 

 

Figure 1.4 Schematics of KASOLA with the planned CSP extension, the loop with the storage tank 

separated and a preliminary sketch of the basic look for TRACE simulation (left to right) 
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2 GENERAL PROCEDURES FOR SODIUM FACILITIES 

 

Before ramping up a sodium facility several steps of qualification are necessary to check, reviewed 

and analyze all sensitive elements of sodium technology, in particular: 

Commissioning phase:  

procedures used for testing prototypical components at large facilities 

- structures heating (baking, wetting) and out-gassing (several times), 

- filling and draining, sodium purification; 

Qualification phase:  

- procedures for calibration of sensors and signal treatment for measuring systems such as 

flowmeters, electrochemical sensors for oxygen, hydrogen, carbon meters, electrodes; 

− methodologies for treatment of the measurements for subsequent use as input data for codes, 

i.e. data “reconciliation”, characterization of uncertainties. 

-  Qualification of whole system incl. test sections, max. temperatures and flow rates as well as 

safety systems (e.g. Interlock Safety System)  

 

Due to the non-permanent use of facilities, it is often required to keep the facility in appropriate 

conditions, in order to be able to restart it in safe conditions. A review of current uses in various 

institutions will be done, than in the section hibernation a “cocooning” procedure is described.  

 

In the appendix, section 7.2 some flow maps and tables are listed for facility concept, design, and 

construction. A section to hazard estimations are added for information.   

2.1 Commissioning phase 

Set into operation or commissioning test are separated into two phases: commissioning and 

qualification. The first phase is necessary for licensing and safety, the latter important for assessment 

of facility and instrumentation quality.  

It has to be mentioned here, that most of the valves are stem type valves where the stem is isolated 

to the atmosphere by a thin walled bellow, which is folded. To avoid cracking of the thin material, a 

minimum temperature for valve operation has to be maintained, once the valve was wetted with 

sodium! 

This was the reason for a large accident in the Almeria Solar plant in 1986 – a simple crack in a bellow.  

Therefore, it is recommended to perform as most as possible test without sodium, and later assure by 

trace heating that the bellow exceeds at least 100°C.  

2.1.1 Dry, without Sodium  

Dry test are very important to identify unforeseen or unexpected deviations. They have a high 

importance for later successful experimental campaigns. As long as the valves are not covered with 

sodium (especially the bellows) all possible operations can be checked at any temperature. This allows 

to get precise opening and closure timed for valves.  

The trace heating is tested under such harsh conditions, since the lack of sodium means lack of heat 

spreading. Consequently, more time is required to achieve equilibrium. If all desired temperature 

levels are reached, the trace heating is qualified. Interplay between ISS (interlock and safety systems) 

and PLC (Programmable Logic Controller) is checked under all conditions including failure of the energy 
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supply. For the latter case, an uninterruptable power supply is installed. If a facility is operated semi- 

or full automatic, this is the best way to identify bugs and wrong implementation of process steps.  

Furthermore, fast emergency draining is tested.  

 

2.1.1.1 Component test procedures 

Component test procedure are in both parts, in dry and filled mode. They are oriented to the special 

purposes of the components such as pump, heat exchanger, valve, cooler, cold trap, plugging meter, 

etc.  

 

2.1.1.2 Heating equipment tests 

Heating equipment has a base function to preserve freezing of sodium or other liquid metals. 

Therefore, the minimum requirement is to reach temperature necessary for the wetting process. 

Furthermore, the heating system shall allow for adiabatic boundary conditions using electrical heating.  

If necessary the heating system can be used to perform cleaning e.g. wetting procedures, if not 

feasible by a heating system in a test section.  

 

2.1.1.3 Loop baking and out-gassing  

The drying is carried out after the installation and check for tightness to completely remove traces of 

air and moisture.  

The unit is heated to a temperature of 150-2000C and blown by a gas stream, preferentially of Argon.  

This provides some heat balancing especially at large pipes where trace heating is feasible only at 

some sides.  Outgassing is preformed keeping the facility at vacuum at temperatures 150-2000C to a 

system pressure determined by the working conditions, not exceeding a lower limit of 3 Pa. Tgis value 

is important not to initiate sodium boiling.  

After receiving the necessary vacuum system is at least two times washed by purified inert gas (argon). 

The installation is filled with argon to the pressure of 0.1-0.3 bar and again vacuum to the pressure of 

no more than 3 Pa. 

Before filling the installation with liquid alkaline metal, the argon is located at an excess pressure of 

0.1-0.3 bar to avoid air ingress when circuit opened unintentionally. For filling, the facility is evacuated 

to remove all gases, which could be dissolved in sodium.  

 

2.1.1.4 Safety installations 

Main safety limits are overpressure, overfilling and detection of leakages. Today two protection 

systems enhance safety. The operational limits, which are indicated by the design and purpose, are 

controlled by the PLC. The safety limits are supervised by the hard-wired ISS, with acts fast and 

efficient to protect facility and staff. A detailed safety strategy was developed for KASOLA, sicne this 

was the first large facility licenced in Germany since ages.  

In KASOLA the facility is operated based on the stage approach as can be seen in Figure 2.1. It shows 

the whole process from system standby up to operational and experimental activities. This is 

advantageous, since with such an approach, the transitions from one state to another can be defined 

clearly with respect of valve and pump operation. Furthermore, behind such a schema the safety 
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provisions such as access control or pump stop is realized. It also shows that between Cold standby 

and operation, two other states have to be reached and checked for further performance.  

 

 

Figure 2.1 Operational stages stage of KASOLA PLC.  

 

Figure 2.2 PLC operation window comprising all KASOLA systems. 
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More details are shown in the PLC operation window as shown in Figure 2.2, comprising all systems, 

sodium, Argon and pressurized gas, required for valve operation.  

2.1.2 Hot and Sodium filled 

 

2.1.2.1 Filling and draining procedures 

The greatest danger when filling the circuit with a liquid alkali metal is the ejection of liquid metal into 

the atmosphere or into an adjacent system and the formation in the cavity of the loop excess pressure 

above the rated pressure. The release of metal from the circuit occurs as a result of depressurization 

of the circuit before filling or during the filling with liquid metal. The causes of depressurization are as 

follows: 

1. Mechanical damage to thin-walled units (bellows, flow meter sections, channels of 

electromagnetic pumps). 

2. High thermal stresses resulting from uneven heating, at the junctions - the transition of thin-

walled parts to thick ones.  

3. High thermal stresses occurring in pipelines during preheating and when filling the circuit with 

liquid metal in the absence of temperature compensators. 

4. Unacceptably high loads on certain sections of pipelines, especially thin-walled ones, as a result 

of an irregular suspension of the contour.    

5. Formation of excessive pressures in the cavities of the circuit that is higher than the calculated 

ones due to the interaction of liquid alkali metal when filled with the washing liquid remaining 

after washing.  

Considering the danger of depressurization of the circuits, it is necessary to take measures that 

preclude the possibility of leakage of liquid alkali metal when the contour is filled. 

 Such measures include:  

1. Removal from the cavity of the contour of the remaining washing liquid in the pockets, in case 

the contour has been washed before filling. 

2. Tightness control before filling by pumping the equipment to the specified pressure and checking 

all welds, flange connections and inputs with a leak seeker; 

3. Uniform heating of pipelines before filling;  

4. Keeping the temperature difference between the liquid metal and the filled circuit as small as 

possible;  

5. Having all contour systems operable during the filling.  

To prevent the emergency position of the circuits and to ensure safe working conditions for 

maintenance personnel before filling the circuits with liquid metal, the following requirements must 

be fulfilled: 

- checking the operation of the circuit heating system in accordance with the operating instructions; 

- ensuring the tightness of the liquid-metal circuit; 

- checking the condition and performance of auxiliary circuits (gas - vacuum, water and sewer, etc.); 

- checking the operation of automatic control systems, interlocks, alarms;  
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- checking the position of the valve in accordance with the operating instructions, the condition of 

pipelines and supports, as well as remote control devices for valves: 

- checking the inscriptions under the devices, knobs and control buttons on the boards.  

During filling process of the circuit with a liquid metal, it is recommended to conduct a visual 

observation of its condition, but the heat control system should provide control over the flow of metal 

into the circuit throughout the filling period. 

Liquid metal filling of the circuit can be carried out both in vacuum and in the inert gas environment, 

depending on the tightness of the circuit, the filling speed and the requirements for the purity of the 

metal in the circuit. In most cases it is preferable to fill in the medium оf inert gas, thus eliminating 

the leakage of air into the cavity of the circuit, and the filling process is more relaxed than when filled 

into vacuum.    

Before filling the circuit, ensure that the circuit is tight and that all systems are operable. It is necessary 

to include and set the levels of the loading and expansion tanks in the designated positions; The level 

gauges shall inform the start and end of filling the circuit by means of a signal. Some types of level 

meters can give information during the entire filling period (i.e., to show the position of the level of 

liquid metal in the charging and expansion tanks). Filling of the sections and devices of the circuit can 

be controlled by flow meters and thermocouples in these sections too.        

In the presence of parallel sections in the contour, cases of overlapping of individual sections with 

liquid metal from the reverse side are possible. To avoid this, it is necessary to reduce the fill rate of 

the circuit.  

When filling the circuit, it is also necessary to take into account the hydraulic resistance of the parallel 

sections. In some cases, it is advisable to artificially increase the hydraulic resistance of individual 

parallel sections having a minimum hydraulic resistance, covering the valve in this section. It is 

recommended to switch off the pumps and special heating furnaces of the circuit during the filling of 

the liquid metal circuit. The doors and hatches of the guards during the entire period of filling the 

circuit, as well as in the course of the circuit, must be in the closed position. Monitoring of the contour 

and all systems inside the protective enclosures during filling and during the operation of the contour 

should be carried out through the inspection windows of the protective enclosures. 

Category I-III installations must have drainage tanks placed in the pit or in a separate room. The 

volume from the bottom of the drain pit to the lowest point of the drain tank must be at least the 

volume of the drain tank. The liquid metal coolants introduce specificity into the plant layouts. 

From the point of view of draining the contour, the scheme with the upper expansion tank is the most 

acceptable. It is convenient and to the greatest extent meets safety requirements. The metal is 

drained from the system by gravity when the pressure of the inert gas in the drain tank is equalized 

and in the expansion tank mounted at the top point. By feeding an inert gas under pressure into the 

expansion tank, it is possible to accelerate the discharge of liquid metal from the circuit. The main 

drain line should be provided with two valves, one of which is reserved. If the system has a number of 

low points, they are all drained into the drain tank. Drainage lines should have a diameter of at least 

12 - 15 mm. It is finally determined taking into account the size of the system and the required 

drainage time. 
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2.1.3 Sodium purification. 

2.1.3.1 Background 

Liquid sodium has a high reactivity and hence solubility for water and oxygen forming sodium oxides 

and hydroxides. In technical facilities, the sodium volumes are evacuated and baked to remove as far 

as possible the surface bound humidity. So the surface is considered as technically cleaned. However, 

the metals are alloyed by different species and the surfaces are oxidized during storage and 

manufacturing. Compared to sodium, these oxides have a higher melting temperature compared to 

sodium. This fact is used to separate and clean sodium in the so called “cold trap”. 

Each sodium installation or laboratory requires a solution to provide experiments with purified 

sodium. For small experiments, the sodium can be replaced after wetting process by fresh sodium, so 

that the oxides are removed manually .  For larger experiments of basic research installation (basic 

loops) this procedure becomes expensive.  

Since the beginning of sodium research as heat transfer fluid, cold traps were developed and improved 

to address the special needs of each facility. Two concepts have been established so far:  1. cleanable 

and 2. permanent cold traps.  

2.1.3.2 Cleanable cold trap 

The cleanable systems have a valve at the lower end and the wire mesh can be cleaned by heating up 

the cold trap without circulation so that nearly all impurities are soluble an can be washed out with 

the sodium.  So the cold trap becomes smaller, however, the size of the heat exchanger is not changed, 

since the temperature levels have to be maintained. In addition, the pressure drop is not reduced, 

since the wire mesh packs are oriented in parallel. Such a design is chosen if the oxygen concentration 

and internal surface is large to avoid big cold-traps. In that case the cold-trap is operated during 

commissioning and qualification phase, where often transients and maintenance operation are 

necessary. After that period, a second cleaning phase provides clean sodium for plant or power 

operation. Haven achieved that level the cold-trap can be removed and cleaned. The loss of sodium 

comprises the whole inventory of the wire mesh pack Void is reduced due to growing oxide scales). 

This volume can be reduced by separating wire mesh packs and economizer (IHX). The wire mesh 

packs can be cleaned by steam or water to produce sodium hydroxide, which can be released with a 

buffer or neutralizer acid.  

 

2.1.3.3 Permanent cold trap 

To avoid the costly maintenance in replacement of sodium oxide coated wire mesh packs, permanent 

cold traps have been developed, to operate during the whole lifetime of a base loop facility comprising 

several experimental campaigns and modification of the facility. If the frequency of modification and 

the additional inner surfaces of the experimental test sections are small compared to the base loop 

surface and expected lifetime of the facility this design offers several advantages. Presently available 

wire mesh packs offer a very high inner surface, so that the additional costs are only on the investment 

side attributed to a larger vessels and wire mesh packs. Taking into account the difficulties of a 

frequently disposal of “dirty” sodium-oxide, the design of a permanent cold trap is favourable.  

 

2.1.3.4 Cold trap operation 

The cold trap operation, cleaning or purging, starts after the wetting phase, initiated preferentially 

after each modification of the facility. This assures that all oxygen is dissolved in the liquid sodium and 
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can be transported to the cold trap. Before or inside the cold trap the sodium temperature is reduced 

by a recuperator and a cooler (air, oil) to a temperature range below ~160°C. Following the solubility 

curve as shown in Figure 2.3 this means an oxygen concentration of 10 ppm. For a reasonable sodium 

purification, the temperature is further reduced by cooling the sodium inventory to achieve 120 °C in 

the cold trap. This allows crystallization of the sodium oxides on the metal surfaces of the stainless 

steel mesh.  

 

Figure 2.3 Solubility of Oxygen in Sodium, theory and measurements  

 

2.1.4 Hot trap 

A hot trap is based on additional materials working as getter to attract and keep the impurities. It is 

normally not used in sodium systems, since the solubility limits for O and H can be easily reached with 

an cold trap. For other liquid metals or alloys this is not so easy, they require a hot trap.  
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2.2 Test of safety installations and provisions  

 

2.2.1 Qualification tests 

At the end of the commissioning phase, the licensing authority has released the facility to operability 

so that now the experimental programme can start. If a new facility reached that state, a second phase 

called qualification phase is added. Here all passive and active components were tested.   

 

2.2.1.1 Test of sensors and data management 

 

2.2.1.2 CFM calibration 

Electromagnetic Conduction Flow Meters are very reliable for measuring flow rates of liquid metals.  

The main advantages of CFM are following:  

- simple construction,   

- easy measurable even rather small its direct current (DC) voltage output signal which is not 

submitted to alternating current (AC) noises [contrary to induction flow meters]  

- voltage output signal is linear with measured flow rate and practically does not depend on the 

liquid metal velocity profile in the channel of flow meter [9]. 

The construction of CFM is very simple, just on the pipe with liquid metal the constant magnetic field 

[it can be electromagnet or assembled from permanent magnets] is applied perpendicular to pipe and 

two electrodes for measuring induced DC output signal.  There are two main design concepts of CFMs: 

round pipe and rectangular cross-section of the channel of flow meter, or close to rectangular cross-

section which is made by flattening of the part of round on which constant magnetic field is applied 

(Figure 2.1). 

 

Figure 2.4 Cross-section of electromagnetic conduction flow meter having round pipe channel (from 

[9]). 

The sensitivity of such CFM at uniform magnetic field and good wetting of electrically conducting 

channel walls by liquid metal (then measuring electrodes may be just welded from outside to the 

channel) can be calculated according to formula from Shercliff’s book [9]: 
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For the constructions of magnetic systems there are several possibilities. For example, mostly 

used is not closed magnetic system for easy installing and removal of CFM from the liquid 

metal piping (Figure 2.2) or magnetic system with closed ferrous yoke at which stronger 

magnetic field can be gained. 

 

 

Figure 2.5  Open magnetic system for easy installing and removal of CFM from the liquid metal 

piping. 

 

 

Figure 2.6 Large scale CFM used at KASOLA  
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Figure 2.7  CFM calibration system 

 

Figure 2.8 Results of CFM calibration on InGaSn loop. 
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At Institute of Physics of University of Latvia (IPUL) different liquid metal circulation loops are used 

for CFM calibration, including low temperature InGaSn loops, using reference Venturi flow meters. 

For measurements data acquisition and their visualization NI measurement system and LabView 

software is used (Figure 2.3). 

 For the stainless steel round piping (also the same for the channel of flow meter) the 

shunting effect of channel walls is rather small as electrical conductivity of stainless steel is 

essentially lower in comparison with electrical conductivity of liquid sodium. Additionally, especially 

for the round stainless steel channel having relatively thin walls their shunting effect also is relatively 

small. Therefore the sensitivity of flow meter can be close to the sensitivity of flow meter having 

electrically non-conducting walls.  

 The calculated sensitivity of electromagnetic conduction flow meter having the two inches 

stainless steel round channel having following dimensions: outer diameter 60.3 mm. inner diameter 

54.3mm and the thickness of wall 3 mm at T = 3000C, B = 0.3 Tesla is shown in Figure 2.5. 

 

Figure 2.9 Results of CFM calibration for Na. 

 

2.2.2 Eddy current flow meters and its calibration in sodium flows 

The Eddy Current Flow Meter (ECFM) is an inductive sensor, which allows flow rate measurements of 

liquid metals. The working principle is based on the application of at least one excitation coil fed by an 

alternating electrical current. The flow-induced change of this alternating magnetic field is then 

Calculated sensitivity of CFM  for sodium (Na)
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measured by typically two coils, and the measured voltage or phase difference between those two 

receiver or detection coils is proportional to the mean flow. There are external and immersed versions 

of such ECFM: in the external version the coils are placed outside of the pipe with the liquid metal 

flow, whereas in the immersed version the coils are inside a preventing thimble surrounded by the 

flow. First results on the application of external ECFMs and their calibration by comparison with 

independent local velocity measurements using the Ultrasonic Doppler Velocimetry (UDV) 

measurement technique were given in [14]. In the following we present results on the calibration of 

immersed ECFMs in sodium flows by comparison with UDV measurements, as well as a very recent 

solution for a Transient ECFM (TECFM) which does not require any calibration at all [15].    

 

2.2.2.1 Immersed ECFM and UDV measurements in a sodium flow 

A miniaturized high temperature ECFM is being developed at HZDR in frame of WP2.4 in frame of the 

ESFR-Smart project. Its purpose is to detect flow rate variations or for example, blockages above fuel 

subassemblies in liquid metal cooled reactors. The sensor is installed inside a cylindrical stainless steel 

thimble that protects the sensor coils from direct contact with the liquid sodium. The ECFM measures 

the mean flow velocity in a certain volume around the sensor. Here we report on the test and 

calibration of this sensor by comparison with UDV measurements in a bended sodium pipe flow.  

Usually an ECFM consists of three magnetic coils (see Figure 2.10). An excitation coil induces eddy 

currents within the liquid metal and two detection coils measure the magnetic flux density at two 

positions – up- and down-stream of the excitation coil. Without any flow at the sensor, the same 

voltage can be measured at each detection coil as they have the same distance from the excitation 

coil and because the magnitude of the eddy currents in their vicinity is equal. The voltage at each 

detection coil is influenced by the magnetic field of the excitation coil and the oppositely directed 

magnetic field of the eddy currents within the liquid metal. When the liquid metal begins to flow, 

further eddy currents are induced due to the motion of the liquid metal through the magnetic field. 

Their magnitude is proportional to the flow velocity. Because the radial component of the magnetic 

field is opposite up- und downstream of the excitation coil, the motion induced eddy currents have 

opposite directions. This results in an increase of the total eddy currents at the upstream coil, because 

the motion induced currents have the same direction as the currents which are induced by the 

excitation field, causing a further reduction of the upstream detection coil voltage. The eddy currents 

at the downstream coil are weakened because they have opposite directions and thus, the 

downstream detection coil voltage is increasing. The change of the coil voltages is linearly dependent 

of the flow velocity. 

 

Figure 2.10 Simplified scheme of the immersed ECFM 
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The wire and coil holder of this high temperature ECFM consist of temperature resistant materials 

since the sensor shall be operated up to a maximum coolant temperature of 650 °C. As wire material 

a nickel plated copper wire with a diameter of 0.25 mm and ceramic insulation is used (note that 

conventional coil wire can only be used for maximum ambient temperatures of around 250 °C). The 

coil holder is made of the ceramic Macor, which has the advantage of preventing any inductive losses 

within the coil holder, as it would be the case with a stainless steel or iron coil holder, for example. 

The ECFM consists of three coils (see Figure 2.11): there are two receiver coils with 250 turns each 

and one excitation coil with 125 turns. The ECFM has a diameter of 11 mm and a total length of 50 mm. 

The stainless steel thimble has an inner diameter of 11 mm and a wall thickness of 2 mm, hence an 

outer diameter of 15 mm. As any electrically conducting material between the coils and the liquid 

metal flow represents a kind of shielding, a reduction of the wall thickness would improve the accuracy 

and sensitivity of the ECFM measurements. During the experiments, the magnitude and phase of the 

voltage difference between both receiver coils is measured using a lock-in amplifier that allows a very 

accurate measurement of sinusoidal signals. The measured values are recorded automatically and 

used to calculate the mean value of the surrounding liquid metal flow velocity. 

 

Figure 2.11 ECFM sensor that was used for the measurements at the NATAN loop 

For the qualification of the ECFM in liquid sodium, measurements were conducted at the HZDR sodium 

loop NATAN (see section 7.4) at sodium temperatures of 160 °C and 240 °C for flow velocities ranging 

from 0 m/s to 1.4 m/s. Since the output signal of the ECFM depends not only on the flow velocity of 

the liquid metal but also on its electrical conductivity/temperature, it has to be calibrated. This can be 

achieved by using the results of ultrasound Doppler Velocimetry (UDV) measurements, which deliver 

spatially resolved velocity profiles along a line in real time. The UDV technique will be explained in 

more detail in the next section. A special test section (Figure 2.12) has been constructed to allow 

simultaneous measurements with the ECFM and UDV sensors. 

 

 

Figure 2.12 Test channel for simultaneous measurements with ECFM and UDV at the NATAN loop. 
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It features four small multi-purpose slots (HZDR design) allow for the application of various ECFM or 

UDV sensors, as well as two larger slots for other UDV sensors. The bended path of the channel permits 

to measure the flow in axial direction (by UDV as well as by ECFM) with these multi-purpose slots 

without substantially influencing the flow. The two opposing slots provide various measuring 

arrangements and alternative measuring principles (as ultrasonic flowmeter method). Furthermore, 

the influence of the narrow channel geometry on the velocity profile can be investigated by measuring 

from both sides and comparing with each other. The test section has a square cross section of 62 x 62 

mm2. By using flange no. 4 higher velocities can be achieved with the same flow rate because the 

ECFM extends into another section of the NATAN loop which features a cross section of 44 x 44 mm². 

Numerical simulations have shown that there is a conductivity-dependent optimal excitation 

frequency with the highest ECFM sensitivity. This frequency can also be determined by sweeping over 

a wide range of excitation frequencies and determining the corresponding magnitude  or phase of the 

receiver voltage difference. For the operation of the ECFM it is not strictly required to measure at the 

optimal frequency but it is recommended to achieve the most accurate results. For applying an ECFM 

in sodium a value of 500 Hz has been determined to be the optimal frequency. It can be seen in Figure 

2.13 that the sensor has its highest sensitivity at about 500 Hz. 

 

Figure 2.13 Frequency sweep to determine the optimal excitation frequency of the ECFM in sodium. 

The following figures show how the measurement results of the magnitude (Figure 2.14) and phase 

(Figure 2.15) difference of the receiver voltages depend on the flow rate, for two different sodium 

temperatures with an excitation frequency of 500 Hz. Each point represents the mean value of 20 

separate measurements, each taken during approximately 1 second. The variation of the flow rate 

between 0.2 m³/h and 9 m³/h corresponds to a velocity range between 0.03 m/s to about 1.4 m/s. 

The straight line is a linear fit of the dataset. 
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Figure 2.14 Measurement results for the voltage magnitude at sodium temperatures of 160 °C and 

240 °C. 

It can be seen that there is an offset in magnitude and phase. It is caused by slight, almost unavoidable 

asymmetries in the structure of the ECFM and should be determined in the calibration process. Note 

that this offset has no impact on the accuracy of the flow rate measurements. Furthermore, it 

becomes obvious that the slope of the linear fit changes with the sodium temperature. This is the 

result of the decreasing electrical conductivity of the sodium and of the increasing resistance of the 

coil wires. To take into account these changes, the EFCM has to be calibrated for different 

temperatures in order to achieve accurate results. 

 

 

Figure 2.15 Measurement results for the phase shift at sodium temperatures of 160 °C and 240 °C. 

The ECFM has proven to be a robust sensor for an instant determination of the local flow rate of liquid 

sodium around the cylindrical thimble containing the sensor. This prototype was tested at HZDR up to 

temperatures of 240 °C, however, is designed to work up to 650 °C. Since phase measurements yield 

more accurate results than the measurements of the magnitude, a higher resolution of the flow rate 

can be achieved by using phase measurements. A very good linear dependence between 
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magnitude/phase and flow rate/velocity has been demonstrated. There is an obvious disadvantage of 

the ECFM arising from the need for calibration mainly due to the temperature variation of the 

electrical conductivity of the liquid sodium. 

The measuring principle of UDV is based on the pulse-wave echo technique. Narrow ultrasonic pulses 

of a few cycles emitted from an acoustic transducer propagate into the fluid along a measuring line 

which is identical to the axis of the ultrasonic beam. A part of the ultrasonic pulse is scattered by micro 

particles suspended in the liquid. Their echo signal is received by the same transducer within the time 

period between two pulse emissions. A short sequence of such echo signals contains the entire 

information of the velocity profile along the ultrasonic beam. Knowing the sound velocity of the liquid, 

the axial position of the scattering particles along the beam axis is determined from the measured 

time span between the pulse emission and the reception of the respective echo signals. The 

movement of the scattering particles inside the measuring volume between two consecutive bursts 

results in a small time shift of the echo signal. A correlation analysis between the echo signals of 

consecutive bursts reveals the velocity component of the velocity vector in direction of the beam axis 

for all positions along the beam. Owing to the Nyquist theorem, the product of measurable maximum 

velocity and penetration depth is limited by the sound velocity and the ultrasonic frequency. 

Ultrasonic methods are non-invasive, but not contactless since a continuous acoustic path from the 

ultrasonic transducer to the fluid under investigation is required. 

In case of hot metallic melts the user is confronted with a number of specific problems: First of all, the 

application of the ultrasonic transducers is usually restricted by temperature. Furthermore, the 

transmission of a sufficient amount of ultrasonic energy from the transducer into the fluid has to be 

guaranteed. Here, the acoustic coupling between transducer and wall, the acoustic transmittance of 

the wall (due to safety reasons the sensors are typically not in direct contact to the fluid) and the 

wetting conditions have to be considered as important issues. Moreover, a balanced concentration of 

scattering particles has to be provided to obtain reliable velocity information from the fluid. On the 

one hand, a very high concentration attenuates the signal in the front region to such an extent that 

the acoustic waves cannot propagate into larger measurement depths. On the other hand, a lack of 

scattering particles in certain measurement depths impedes to determine the flow velocity 

correspondingly. 

First results from ultrasonic flow measurements carried out at the multi-purpose of the test section 

slots are presented here: Figure 2.16 shows time-averaged velocity profiles (mean flow) measured at 

the multi-purpose slot 1 (in z-direction, see Figure 2.12) for different coil currents of the MHD pump 

at NATAN. The elevations of flow velocity at the beginning and the end of the profile arise from the 

bends in the pipe. Additionally, the persistent slope of the velocity profile after the first elevation is a 

result of the flow, which centralizes again after being squeezed at the wall in the first bending. The 

profiles for Ipump = 5 A and Ipump = 10 A are reliable but the profile for Ipump = 15 A decreases significantly 

in the last third of the measurement depth. Furthermore, the shape of the profile of Ipump = 20 A 

corresponds to the other profiles only in the first segment.  

At higher flow rates probably more scattering particles are stirred into the bulk flow causing an 

increased attenuation of the ultrasonic pulse in larger depths resulting in a low signal-to-noise ratio 

and underestimated velocity values. This assumption is supported by the energy profile of the 

scatterers provided by the measurement device revealing a slow decreasing energy level with z for 

low flow rates and an intense energy level at the beginning with almost no energy at the end for high 

flow rates. In this case the required balanced concentration of scatterers is not guaranteed anymore. 
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Figure 2.16 Velocity profiles measured at slot 1 for different pump currents 

The peak at the beginning of the velocity profile for Ipump = 15 A is an artifact caused by a strong 

stationary echo. The effect of the narrow channel geometry associated with the significant beam 

divergence for such high measurement depths is presented in figure 7 where the velocity profile was 

measured from one side (from slot 1, see Figure 2.12) and from the other side (from slot 3). By 

mirroring the profile obtained from slot 3 the profiles can be directly compared to each other. It should 

be noted that the profiles were shifted a little bit to compensate the spatial filtering by the 

measurement device. Furthermore, an artifact occurs at the end of the profile of slot 1. Figure 2.17 

reveals that strong velocity gradients are smoothened and sharp velocity elevations are spread with 

increasing measurement depth. 

 

Figure 2.17 Velocity profiles (Ipump = 5A) measured from opposite sides (slot 1 and slot 3). 

Here we have shown, that measurement depths of at least 350 mm can be achieved with the 

ultrasonic velocimetry in sodium; however, an unbalanced particle concentration may be a major issue 

for such measurements depending on the flow conditions at different flow rates since the 

concentration of these natural scatterers is difficult to adjust. In our case the sodium in the loop 

exhibits a too high concentration impeding reliable measurements at higher flow rates. Furthermore, 

the measured flow velocity may suffer from an increasing systematic measurement error with 

increasing measurement depth in narrow geometries. This has to be considered in the measurement 

analysis. 
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2.2.2.2 Immersed TECFM allowing calibration free velocity measurements 

Eddy Current Flow Meters (ECFM) are widely used for measuring the flow velocity of electrically 

conducting fluids. Since the flow induced perturbations of a magnetic field depend both on the 

geometry and the conductivity of the fluid, extensive calibration is needed to get accurate results. 

Transient Eddy Current Flow Metering (TECFM) has been developed to overcome this problem. It 

relies on tracking the position of an impressed eddy current system that is moving with the same 

velocity as the conductive fluid. Since the eddy current moves with the velocity of the liquid, there is 

no need for a calibration of the sensor. 

Compared to the EFCM, the TECFM sensor has an almost similar design. By adding one additional 

excitation coil, calibration free velocity measurements can be achieved by creating two oppositely 

directed eddy current rings with the same amplitude (see Figure 2.18). 

 

Figure 2.18 Simplified scheme of the TECFM sensor. 

The two detection coils are used to track the movement of the eddy current system that was imprinted 

into the liquid metal by suddenly switching off the excitation current of the excitation coils. It is 

important, that the excitation currents are oppositely directed, so that the resulting magnetic fields 

and induced eddy currents also have an opposite orientation. This creates an area in the middle 

between both eddy currents rings where the magnetic field strength equals zero. The position of this 

so called zero crossing can be identified from the induced voltage within the two detection coils. Since 

the whole eddy current system is moving with the flow of the liquid metal, the location of the zero 

crossing can be monitored for a certain time period and from this the flow rate or flow velocity can be 

derived (see Figure 2.19). Here, the resulting slopes fit very well with the predefined flow velocities. 

 

Figure 2.19 Numerical simulation results of the sensor output for the movement of the zero crossing 

point x0 over 500 µs at three different flow velocities v. 
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In addition to the numerical simulation, measurements in liquid sodium at 180 °C in the NATAN loop 

were performed, using slot 4 of the multi-purpose slots (see Figure 2.12) of the test section. Some of 

the results are shown in Figure 2.20 for measurements at six different flow velocities. It can be seen, 

that the slope of the sensor output is increasing, for higher velocities. The flow velocity can be 

extracted from the results by calculating the linear regression line of the respective measurement. 

The flow velocity of the liquid sodium is equal to the slope of the regression line.  

 

 

Figure 2.20 Measurement results for the flow velocity of the TECFM sensor in liquid sodium at 180 °C. 

The slope of the dashed red line is equal to the respective measured velocity. 

Although there is considerable noise superimposed with the sensor signal, we have achieved 

measurement errors in the range of only a few percent. Further measurements in other liquid metals 

have been done for an additional validation of this new, calibration free measurement technique.  
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3 SENSOR INTERPRETATION  

3.1 Signal analysis and interpretation  

The measurements in sodium facilities are influenced by many factors. which have to be taken into 

account. Important factors are: 

- Temperature dependence of sodium properties and sensor readings; 

- Influence of vibrations; 

- Electromagnetic induction caused induced voltages, a.o. 

The temperature dependence of sodium properties (Table 3.1.) influences many physical processes 

and must be taken into account by interpreting sensor measurements.  

Table 3.1 Summary of the recommended correlations for main thermophysical properties of liquid 

sodium (Na) (p ~ 0.1 Mpa, except critical parameters and the saturated vapour pressure) 

[10]. 

 

The measured potential differences might be also influenced by the thermoelectric properties of 

sodium (Figure 3.1). 

The temperature dependence of other parameters might be important as well. For instance, the 

sensitivity of CFM depends on the operating temperature as both electrical conductivities of walls and 

LM are changing with temperature. So the corresponding corrections must be introduced in the 

following formula: 
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Additionally, there may be need for correction of magnetic field strength if magnetic poles are 

overheated to some extent over room temperature due to heat flux from the channel of CFM having 

high temperature. For example, for Sm2Co17 permanent magnets the coefficient of magnetic field 
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diminishing is a = 0.03 % per one grade, but for NdFeB magnets its value is 0.1 %.  So at measuring 

operating temperature of LM in the CFM channel as well the temperature of magnetic poles should 

be measured during flow meter operation and correction for value of B must be introduced: 

 0 1TB B T   ,  where T  is magnetic poles overheating in comparison with room temperature. 

Correspondingly, at this the sensitivity of flow meter will be smaller - proportional to smaller magnetic 

field value: BT/B0. 

 

 

Figure 3.1  The negative of the absolute thermoelectric power for Na and for Pt and values given by 

Cook and Fritsch for Na [11]. The thermoelectric power of Pt relative to Na (dE/dT) is 

Included [12]. 

 

The sensors themselves are subject to many factors determining their performance (Figure 3.2 shows 

85 Hall sensor signal output at two different temperatures).  Selection of matched pairs of sensors 

using differential measurement schemes and/or measurement temperature correction might be 

necessary.  
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Figure 3.2 Honeywell SS490 Series Hall sensor signal dependence on temperature at zero magnetic 

field. 

 

The sodium facilities are often subject to vibrations of different origin: 

- Construction vibrations,  

- Hydrodynamic fluctuations, 

- Double supply frequency of EMP, 

-  Any other  

Care must be taken to access the influence of the vibrations on the sensor operation, in particular, if 

analysing transient processes. Acceleration measurement at sensor locations might be useful.  

Electromagnetic induction induced parasitic signals originate from several sources: 

- High current power supply lines with main frequency, 

- Frequency inverters with wide spectrum of EM noise, 

- EM induced currents from inductors, transformers, coils a.o. equipment.  
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3.2 Signal to noise ratio  

 

Depending on the measured parameter, the signal voltages can be in interval from several millivolts 

till tenth of volts or even higher, for instance, a typical CFM signal is in millivolt range.  

To increase the signal to noise ratio, differential inputs to measurement system are preferable. It 

might be beneficial to use several sensors measuring the difference of the parameters and/or 

compensating the outer noise. 

Care must be taken by choosing the grounding points. Regardless of the good electrical conductivity 

of sodium, potential differences might exist at different points in sodium loop leading to errors in 

measurement system operation and/or measured values.  

Hydrodynamic parameters (velocity, pressure) fluctuation frequency range is typically quite low – 10-

100 Hz. A low pass filtering might help to improve the signal to noise ratio.  

 

4 INTEGRATION OF TEST SECTIONS INTO FACILITY  

Having ramped up a new facility, the next step is to exchange the test section. This requires some 

provisions as described below.  

4.1 Design and interface definition  

The interfaces defined by physical (geometry, design, standards), logical (fit to PLC) and thermo-

fluiddynamics (flow rate, temperatures,…) as defined by the facility have to be met by the new test 

section or component in test or device under test (DuT).  

4.2 Test section preparation 

As described above the same phases have to be performed to integrate a new section into a running 

facility.  First, the test section or device is optically inspected and the inner surface cleaned by hot dry 

argon to avoid moisture as far as possible, if necessary. The facility is opened while having a slight 

argon overpressure to avoid access of air and moisture.   

The following processes rely on the stage approach shown in Figure 2.1 and start with an empty facility 

after all connections are closed and tested for leak-tightness.  

 

4.2.1 Commissioning phase 

The facility is brought to wetting temperature, evacuated and flooded with Argon several times.   

Start wetting of the test section depending on the tolerable temperature range. The wetting time is 

depending on the additional surface size and the material surface. After wetting, the sodium 

purification process is initiated, based on the additional new surfaces. Reaching the solubility limit, 

the plugging sensor is used to check the reached purification step.  If necessary wetting and 

purification steps are repeated.  
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4.2.2 Qualification phase  

Normally, test sections are equipped with sensors and active components such as heaters, valves and 

pumps, which have to be tested and qualified.  

To get a broad basis and to check repeatability, the measurements should be repeated a second time.  

If the variations between both runs are acceptable and explainable, the qualification is finished and 

the calibration curves can be imbedded into the PLC.  A check of the PLC based safety margins can be 

added but this depends on the application range of the test section compared to that of the facility.  

 

4.2.3 Experimental phase  

In the experimental data from the qualification are used to interpret the sensor readings using the 

calibration curves in the PLC.  

If external sensors such a TC or an flow meter give unclear signals, the reason has to be identified and 

the defect sensor replaced by a new one. The sensor specific calibration hast to be rerun.  

 

4.3 Shut down  

Shut down is the termination of the qualification or experimental phase so that the facility is in a safe 

and reliable state. We separate two procedure leading to short or long term shut down. A third 

procedure, shut down to hibernation is describe in section 5.2. 

4.3.1 Shut down steps  

The shut down is divided into following procedures: 

1. Shut down of heating power of the test sections 

2. Cool down facility until defined storage temperature of the dump tank.  

3. Draining procedure 

4. Trace heating control 

5. Cover gas pressure  

4.3.2 Emergency shut down steps  

This is only necessary if a leak is detected by the leak detection system.  

1. Shut down of power of trace heating and test section heating and start emergency draining 

procedure (this is normally initiated by an ISS)  

2. Check facility by video cameras to detect leaking sodium 

3. Cover gas pressure 

 

4.3.3 Short term shut down 

1. Shut down of heating power of the test sections 

2. Cool down facility using forces convection to heat exchanger but avoiding too high cool-down 

rates. This requires control of the heat sink to avoid unwanted thermal stresses. Target 
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temperature is dependent on the operation temperature of the most critical 

sensor/components etc. This procedure is often implemented in the control logic.  

3. Draining procedure: 

4. Command trace heating control to maintain facility for next campaign on filling temperature. 

That step is dependent on the thermal insulation and the duration of shut down. Normally 

this can last 1-2 days, since the high temperature insulation prevents effectively cool-down so 

that only small amount of trace heating power is necessary.  

5. Control cover gas pressure to avoid diffusion of atmospheric gases. Pressure should be <0,15 

MPa.  

6. Shut down trace heating control allowing to cool down to room temperature 

 

4.3.4 Long term shut down  

1. Command trace heating control to maintain facility for next campaign on filling temperature. 

That step is dependent on the thermal insulation and the duration of shut down. Normally 

this can last 1-2 days, since the high temperature insulation prevents effectively cool-down so 

that only small amount of trace heating power is necessary.  

2. Control cover gas pressure to avoid diffusion of atmospheric gases. Pressure should be 

<0,15 MPa.  

3. Shut down trace heating control allowing to cool down to room temperature 

4.4 Dismantling of components 

Principally connection in sodium facilities are welded to ensure leak-tightness. Test sections are 

connected depending on the size of the pipe by flanges or screwed connectors such as (Swagelok™). 

Flanges require a special sealing mad of metal (C-type) omitting any carbon based materials. In 

screwed connectors, the self-welding or diffusion welding has to be omitted by special lubricant. 

 

4.4.1 Safety provisions 

 

4.4.2 Transport to cleaning station 

This is dependent on the remaining sodium/sodium-oxide inside the device/components. Normally, if 

at room temperature a simply plastic bag filled with inert gas is sufficient. For larger components, the 

openings are closed by a blind flange of a plastic cap. Cleaning station should be nearby the 

experimental building 

 

4.4.3 Cleaning procedure 

In most of the cases non-nuclear experiments are performed or sodium is coming form non-nuclear 

loops (secondary loop). For that situation, cleaning is described below. Nuclear contaminated sodium 

cleaning is described by CEA, having large experiences with huge amount of primary sodium coming 

from industrial (SPX) and research reactors (PHENIX).  
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Figure 4.1 Lattice box for cleaning of small components (left) and partially blocked pipe (right) 

 

Cleaning process is dependent on the size of the components and the detected sodium oxide 

remnants. For small components a lattice-box as shown in Figure 4.1 (left) is used allow to mount the 

devices safely inside the box. Typical sodium remnants are shown in Figure 4.1 (right) where sodium 

was oxidized and thus frozen unintentionally.   

The devices are then spayed either by steam or by soft spray water, resulting in release of hydrogen 

and NaOH, which is diluted and can be released. 

 

5 HIBERNATION  

The hibernation of sodium facilities is very important to preserve the investment and the expertise 

gained by that facility. Before going into details, one example, the sodium storage tank of KASOLA was 

preserved for more than 20 years until in 2015 the licencing authority request a review of wall 

thicknesses and welding by ultrasonic investigation. It turned out the original material thickness was 

preserved, no corrosion detectable.  

5.1 Conditions for preservation 

Before preservation and hibernation, the facility is inspected and documented for future used. Be 

aware that a lot of information gathered during operation is not collected for several reasons. Also 

protocols of the last operation and manuals are reviewed and checked for actuality. 

The documentation report is extended to describe the step for hibernation and a proposal for re-

activation. For our storage tank, the sodium inventory and the purity was documented carefully.  
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5.2 Shut down to hibernation 

For long term shut down, here called hibernation, the facility must be cleaned in advance using high 

temperatures and several purification runs using cold trap. Finally, the sodium is collected in the 

storage tank, except for that in the cold-trap. It is not advised to use that part, even at low temperature 

because of the risk of impurity entrainment. In KASOLA this amount to a loss of 4-5% of the whole 

inventory.  

Two different procedures are feasible:  

1. Preservation of the whole loop or  

2. Preservation of sodium in the storage tank separately from the facility.   

Both solutions have advantages and disadvantages.  

 

5.3 Supervision of hibernation  

This is depending on the hibernation state. If the sodium in a storage tank is solid and the pipes are 

closed by welded plugs, no supervision is necessary if sufficient inter gas pressure is applied before 

closure. This can be performed using screwable plugs, which are highly leak tight.  

A good example is the KASOLA dump tank (see Figure 1.4, right) with is now app. 50 years old housing 

7 m² at temperature up to 350°C. During licensing the tank wall thicknesses were tested at different 

location and found to be at original state.  

 

6 SUMMARY 

The document give an overview and some insight coming from different research units hot to 

operate sodium facilities of different sized ranging from a few litres up to 7m³.   

The procedure varied between the different R&D periods and reflect the gain in supervision and 

demand in licensing efforts.  

Since the development is ongoing as seen in the last three years in the SOLTEC [13] programme, the 

document should be considered as a living document comprising the knowledge for future engineers 

and scientist.  

For the nuclear applications, it is essential to extend the application range to non-nuclear 

applications to maintain the competence and to incorporate new ideas. This has been done in 

extending the sodium technology to CSP actuall in Australia and to accelerator driven targets and 

more generally sodium as an efficient heat transfer media.  
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7.2 Example for KIT facility ramp-up procedures  

 

 

Figure 7.1 Example for test rig and facility planning and design 
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7.3 Facilities inside KIT in LIMCKA 

Table 7.1 List of liquid metal facilities operate within Liquid Metal Competence Center Karlsruhe 

 

 

 

 

7.4 Facilities and procedures at HZDR  

 

NATAN: NATtrium-VersuchsANlage 

 Fluid inventory: 100 l 

 Temperature range: 120 - 300oC 

 Test sections: horizontal (1), vertical (2), rectangular cross section (45 x 50 mm2)  

 Velocity range: up to 1.5 m/s 

 Magnetic systems: electromagnets supplying a transverse magnetic field 

magnet 1: length of uniform field 320 mm, maximum field strength 0.45 T 

magnet 2: length of uniform field: 1100 mm, maximum field strength: 0.8 T  

 Range of dimensionless parameters: Reynolds number Re up to about 105  

Hartmann number Ha up to 2700 (magnet 1), up to 4800 (magnet 2)  

Interaction parameter N: 800 (magnet 1, vSo = 0.1 m/s), 2500 (magnet 2, vSo = 0.1 m/s)  

Facility Institute Structure Fluid Built Operation Funding Sources

Thesis V2 IKET KALLA Pb 2006 Coolant Loops Programm des BMBF 

TELEMAT IKET KALLA PbBi 2006 Coolant Loops Programm des BMBF 

THEADES IKET KALLA PbBi 2003 HGF Programm (Helmholtz-5716)

ALINA IKET KALLA Na

CORRIDA IAM-AWP PbBi 2005 EU Vella

CORTINA IAM-AWP HEMCP Na 2018 HEMCP

SOMMER IKET KALLA PbBi 2016 2019 LIMTECH

MEKKA IKET KALLA NaK 1990 FUSION 

KASOLA INR KASOLA Na 2015 2019 HEMCP, LIMTECH, Internal Funding INR

ATEFA INR HAC Na 2016 2018 HEMCP, LIMTECH

SOLTEC I - III INR KASOLA Na 2016 2018 HEMCP, LIMTECH

DITEFA INR HAC Na 2018 2019 LIMTECH, internal Funding

KARIFA INR HAC Na 2019 FUSION

AMTEC Lab INR HAC Na/Li/NaK 2016 2017 HEMCP 

Minipot IHM PbBi 2012 EU 

CORELLA IHM Pb/PbBi 2008 IHM /Drittmittel

FRETHME IHM Pb/PbBi 2011 IHM

COSTA IHM Pb/PbBi/Sn 2000 IHM/Dritttmitel

COSTA-Na IHM Na 2017 2018 IHM

GESA IHM Materials 2000 HGF, Protective coatings

Analytical Equipment IHM, IAM, … Materials HGF
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Figure 7.2 Schematic view of the sodium loop  

(https://www.hzdr.de/db/Cms?pOid=52201&pNid=331 ) 




