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PFR Operational Feedback

Operational data from past reactors
are necessary to validate
the safety of future reactors.

Examples —
Power coefficient of reactivity
Natural convection cooling



The Prototype Fast Reactor

1961-1966 Design

Preliminary Specification 1964

Sanction to construct 1966

|dentification of NIV swelling 1966
1967-1974 Construction

Reactor roof weld cracks 1969-1971
1974-1994 Operation

Critical 1974

Full Power 1977

Evaporator leaks 1974-1981
Primary oil leak 1992
Closure 1994
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PFR Operational Experiments

Coolant Inlet temperature coefficient of reactivity
Coolant Flow coefficient of reactivity
Power coefficient of reactivity

Natural convection cooling at low power
(Primary coolant pumps stopped)



Power Coefficient of Reactivity

Dependence of reactivity on power and coolant flow

0p/0P = a(P) + bP/F

a depends on temperature of fuel
(Doppler and axial expansion)

b depends on expansion of core structure
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Power Coefficient of Reactivity

pDoppIer =" In(Tabs)

The Doppler reactivity change varies roughly as
1/(absolute temperature)



Power Coefficient of Reactivity

Fuel axial expansion decreases with age

New fuel
free from

clad

Expands as
fuel temp.

Old fuel
adheres

to clad

Expands as
clad temp.
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PFR Power Coefficient of Reactivity
Selected measurements of the
flow-independent term a(P)

Date

Oct-75

Aug-76

Dec-78

Mar-85

Power range

MW(th)

16-50
100-200

25-250
10-455

195-170
195-175
240-280
355-386

590-620
470-620
310-470

Flow

%

30
150

77
90

88
47
90
90

100
100
100

Power Coeff
cents/MW

-1.01 +/-0.14
0.76 +/- 0.04

-0.58 +/- 0.02
-0.51 +/- 0.02

-0.47 +/- 0.02
-0.54 +/- 0.02
-0.38 +/- 0.02
-0.44 +/- 0.02

-0.20 +/- 0.05
0.23 +/- 0.03
0.24 +/- 0.03

a(P)
cents/MW

-0.48 +/- 0.14
-0.44 +/- 0.04

-0.37+/-0.02
-0.33 +/-0.02

-0.36+/- 0.02
-0.30 +/- 0.02
-0.26 +/- 0.02
-0.20 +/- 0.02

-0.07 +/- 0.05
-0.10 +/- 0.03
-0.11 +/- 0.03



PFR Power Coefficient of Reactivity

0p/0P = a(P) + b/F
Experimental data

a decreases with increasing power
(due to Doppler)
a decreases with burnup of fuel
(due to adhesion of fuel to clad)
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Rotating Shield
Reactor Roof
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PFR Reactor Jacket during construction




PFR Natural Convection Tests

Coolant pumps de-energised (free to rotate)
Reactor critical at low power (~ 10 MW)
Decay Heat Rejection loops inactive, then active



PFR Natural Convection Tests
Expected Flow Pattern
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PFR Natural
Convection Tests

Observed Temperatures
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PFR Natural Convection Tests

Subassembly Outlet
Conjectured Flow Pattern
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Conclusion

Operational Feedback is valuable.

Safety parameters such as reactivity coefficients and
natural convection flow patterns are affected by
complex conditions in an operating reactor.

Therefore design predictions need validation by data
from plant operation.



