

Deterministic modelling of nuclear systems Spring School on Sodium Cooled Fast Reactors University of Cambridge, March 29th-31st, 2021 – online

Prof. Christophe Demazière demaz@chalmers.se

TASK FORCE ON DETERMINISTIC REACTOR MODELLING

Structure of the presentation

- Introduction
- Reminder about the local balance equations in neutronics and thermal-hydraulics
- Derivation of the coarse mesh balance equations
- · Closing the system of equations
- Solving the system of equations

Introduction

Introduction

- Nuclear reactor systems = **large** and **complex** systems
- Strongly **heterogeneous** systems, especially for the core, with **different scales**, by **design** and due to the **physical phenomena** involved, such as:
 - Neutron interactions at the atomic scale
 - Turbulence and boiling at the millimeter scale
 - Pins at the centimeter scale
 - Assembly at the decimeter scale
 - Core at the meter scale

>Multi-scale and multi-physics systems

Strangely enough for the neutronics, the deterministic modelling of such systems relies on the principles of continuum physics

Introduction

- How to model such systems?
- ... the large size requires a **coarse mesh** modelling
- ... phenomena at the local scales influence the global scales
- Need to construct a modelling framework preserving the multi-scale phenomena while only resolving the global <u>multi-physics</u> problem

>Lecture focusing on **neutronics** and **thermal-hydraulics**

• **Disclaimer**: lecture focusing on the rational behind the modelling approach rather than on how the modelling is done

Reminder about the local balance equations

Reminder about the local balance equations in neutronics

• Local balance equations in **neutronics** given by the **neutron transport equation** or **Boltzmann equation**:

$$\begin{split} &\frac{1}{v(E)}\frac{\partial}{\partial t}\psi\left(\mathbf{r},\mathbf{\Omega},E,t\right)+\mathbf{\Omega}\cdot\boldsymbol{\nabla}\psi\left(\mathbf{r},\mathbf{\Omega},E,t\right)+\boldsymbol{\Sigma}_{t}\left(\mathbf{r},E,t\right)\psi\left(\mathbf{r},\mathbf{\Omega},E,t\right)\\ &=\int_{(4\pi)}\int_{0}^{\infty}\boldsymbol{\Sigma}_{s}\left(\mathbf{r},\mathbf{\Omega}'\rightarrow\mathbf{\Omega},E'\rightarrow E,t\right)\psi\left(\mathbf{r},\mathbf{\Omega}',E',t\right)d^{2}\mathbf{\Omega}'dE'\\ &+\frac{\chi^{p}\left(\mathbf{r},E\right)}{4\pi}\left[1-\tilde{\beta}\left(\mathbf{r}\right)\right]\int_{0}^{\infty}\nu\left(\mathbf{r},E'\right)\boldsymbol{\Sigma}_{f}\left(\mathbf{r},E',t\right)\phi\left(\mathbf{r},E',t\right)dE'+\frac{1}{4\pi}\sum_{i=1}^{N_{d}}\chi_{i}^{d}\left(\mathbf{r},E\right)\lambda_{i}\left(\mathbf{r}\right)C_{i}\left(\mathbf{r},t\right) \end{split}$$

with

$$\frac{\partial C_{i}}{\partial t} \left(\mathbf{r}, t \right) dt = \tilde{\beta}_{i} \left(\mathbf{r} \right) \int_{0}^{\infty} \nu \left(\mathbf{r}, E \right) \Sigma_{f} \left(\mathbf{r}, E, t \right) \phi \left(\mathbf{r}, E, t \right) dE - \lambda_{i} \left(\mathbf{r} \right) C_{i} \left(\mathbf{r}, t \right), i = 1, \dots, N_{d}$$

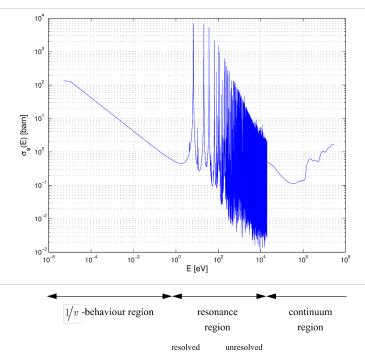
Reminder about the local balance equations in neutronics

- Complex equations:
 - Integro-differential equations
 - Multi-dimensional phase space for the variable, i.e. $(\mathbf{r}, \mathbf{\Omega}, E, t)$
 - The macroscopic cross-section data, defined as:

$$\Sigma_{\alpha}\left(\mathbf{r}, E, t\right) = \sum_{X} N_{X}\left(\mathbf{r}, t\right) \sigma_{\alpha X}\left(E\right)$$

have a complex dependence on energy

Reminder about the local balance equations in neutronics



Energy-dependence of the microscopic absorption crosssection for ²³⁸U (JEFF 3.1 neutron data library)

9

resonances resonances

Reminder about the local balance equations in thermal-hydraulics

• Local balance equations in thermal-hydraulics given:

• In the fluid, by the Navier-Stokes equations complemented by an "energy" conservation equation:

$$\begin{aligned} \frac{\partial \rho}{\partial t}(\mathbf{r},t) + \nabla \cdot (\rho \mathbf{v})(\mathbf{r},t) &= 0\\ \frac{\partial (\rho \mathbf{v})}{\partial t}(\mathbf{r},t) + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v})(\mathbf{r},t) &= \nabla \cdot \mathbf{\tau}(\mathbf{r},t) - \nabla P(\mathbf{r},t) + \rho(\mathbf{r},t)\mathbf{g} \end{aligned}$$
$$\rho(\mathbf{r},t)\frac{\partial h}{\partial t}(\mathbf{r},t) + (\rho \mathbf{v})(\mathbf{r},t) \cdot \nabla h(\mathbf{r},t) &= -\nabla \cdot \mathbf{q}''(\mathbf{r},t) + q'''(\mathbf{r},t) + \mathbf{\tau}(\mathbf{r},t) \cdot \left[\nabla \otimes \mathbf{v}(\mathbf{r},t)\right] + \frac{\partial P}{\partial t}(\mathbf{r},t) + \mathbf{v}(\mathbf{r},t) \cdot \nabla P(\mathbf{r},t) \end{aligned}$$

• In the solids, by the heat conduction equation:

$$c_{\scriptscriptstyle P}\left(\mathbf{r},t\right)\rho\left(\mathbf{r},t\right)\frac{\partial\,T}{\partial\,t}\left(\mathbf{r},t\right) = q^{\prime\prime\prime}\left(\mathbf{r},t\right) + \boldsymbol{\nabla}\cdot\left[k\left(\mathbf{r},t\right)\boldsymbol{\nabla}\,T\left(\mathbf{r},t\right)\right]$$

Reminder about the local balance equations in thermal-hydraulics

• Local balance equations in thermal-hydraulics complemented by:

• Equation of state for the fluid, such as:

 $\rho\left(\mathbf{r},t\right) \equiv \rho\left[P\left(\mathbf{r},t\right),h\left(\mathbf{r},t\right)\right]$

• Constitutive equations for the fluid, such as:

$$\boldsymbol{\tau}(\mathbf{r},t) \equiv \boldsymbol{\tau}\left[P(\mathbf{r},t),h(\mathbf{r},t),\mathbf{v}(\mathbf{r},t)\right]$$
$$\mathbf{q}''(\mathbf{r},t) \equiv \mathbf{q}''\left[P(\mathbf{r},t),h(\mathbf{r},t),T(\mathbf{r},t)\right]$$

• Constitutive equations for the solids, such as:

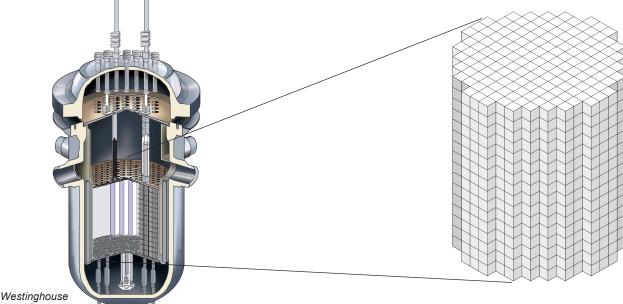
$$\begin{split} c_{P}\left(\mathbf{r},t\right) &\equiv c_{P}\left[T\left(\mathbf{r},t\right)\right]\\ \rho\left(\mathbf{r},t\right) &\equiv \rho\left[T\left(\mathbf{r},t\right)\right]\\ k\left(\mathbf{r},t\right) &\equiv k\left[T\left(\mathbf{r},t\right)\right] \end{split}$$

Reminder about the local balance equations in thermal-hydraulics

- Note about the **constitutive** equations:
 - The constitutive equations are based either on first principles or phenomenological principles
 - Obtaining such equations often relies on experiments
 - >Such constitutive equations thus often depend on the specific conditions on the experiments

- Due to the **complexity** of the systems and their **size**, need to **average** the local balance equations on a proper **multi-dimensional grid**:
 - For the neutronics:
 - Average in **space** (homogenization)
 - Average in angle
 - Average in energy (condensation)
 - For the thermal-hydraulics:
 - Average in **space**
 - Average in time

• Example of the averaging in space:



- The averaging of the equations need to **preserve "meaningful" quantities**, so that solving the averaged equations lead to the true averages of the quantities of interest
- **Far from trivial task**, especially for the neutronics

- Average in **angle**: in essence, procedure equivalent to:
 - Integrating the transport equation on all solid angles
 - Replacing the isotropic scattering cross-section by its transport corrected value:

$$\Sigma_{s0}\left(\mathbf{r}, E' \to E\right) - \delta\left(E' - E\right) \int_{0}^{\infty} \Sigma_{s1}\left(\mathbf{r}, E' \to E\right) dE$$

• Solving for the scalar neutron flux:

$$\phi(\mathbf{r}, E, t) = \int_{(4-)} \psi(\mathbf{r}, \mathbf{\Omega}, E, t) d^2 \mathbf{\Omega}$$

and for the **neutron current density vector**:

$$\mathbf{J}(\mathbf{r}, E, t) = \int \mathbf{\Omega} \psi(\mathbf{r}, \mathbf{\Omega}, E, t) d^{2}\mathbf{\Omega}$$

Assume proportionality between the neutron current density vector and the gradient of the scalar neutron flux (Fick's law):

$$\mathbf{J}(\mathbf{r}, E, t) = -D(\mathbf{r}, E, t) \boldsymbol{\nabla} \phi(\mathbf{r}, E, t)$$

• Average in **angle**: in essence, procedure equivalent to:

• Note: A **more rigorous approach** is to first derive the so-called *P*₁ approximation of the transport equation and to assume equal anisotropic in-scatter and out-scatter at every energy

Obtained balance equations:

$$\begin{split} &\frac{1}{v(E)}\frac{\partial\phi}{\partial t}\left(\mathbf{r},E,t\right) = \boldsymbol{\nabla}\cdot\left[D\left(\mathbf{r},E,t\right)\boldsymbol{\nabla}\phi\left(\mathbf{r},E,t\right)\right] + \int_{0}^{\infty}\boldsymbol{\Sigma}_{s0}\left(\mathbf{r},E'\to E,t\right)\phi\left(\mathbf{r},E',t\right)dE' \\ &+\frac{\left[1-\tilde{\boldsymbol{\beta}}\left(\mathbf{r}\right)\right]\chi\left(\mathbf{r},E\right)}{k}\int_{0}^{\infty}\nu\left(\mathbf{r},E'\right)\boldsymbol{\Sigma}_{f}\left(\mathbf{r},E',t\right)\phi\left(\mathbf{r},E',t\right)dE' + \sum_{i=1}^{N_{g}}\lambda_{i}\left(\mathbf{r}\right)\chi_{i,g}^{d}\left(\mathbf{r}\right)C_{i}\left(\mathbf{r},t\right) - \boldsymbol{\Sigma}_{t}\left(\mathbf{r},E\right)\phi\left(\mathbf{r},E\right) \end{split}$$

and

$$\frac{\partial C_{i}}{\partial t} (\mathbf{r}, t) dt = \tilde{\beta}_{i} \left(\mathbf{r} \right) \int_{0}^{\infty} \nu \left(\mathbf{r}, E \right) \Sigma_{f} \left(\mathbf{r}, E, t \right) \phi \left(\mathbf{r}, E, t \right) dE - \lambda_{i} \left(\mathbf{r} \right) C_{i} \left(\mathbf{r}, t \right), i = 1, \dots, N_{d}$$

- Average in energy:
 - The neutron energy range of interest $[E_{min}; E_{max}]$ is divided into *G* adjacent **energy groups**:

$$E_{\min};E_{\max}\big] = \bigcup_{g=G}^1 \Big[E_g;E_{g-1}\Big]$$

- All energy-dependent quantities are **integrated with respect to energy** on such energy groups using proper **weighting functions**
- Obtained balance equations:

$$\begin{split} \frac{1}{v_g} \frac{\partial \phi_g}{\partial t} (\mathbf{r}, t) &= \mathbf{\nabla} \cdot \left[D_g \left(\mathbf{r}, t \right) \mathbf{\nabla} \phi_g \left(\mathbf{r}, t \right) \right] + \sum_{g'=1}^G \Sigma_{s0,g' \to g} \left(\mathbf{r}, t \right) \phi_{g'} \left(\mathbf{r}, t \right) \\ &+ \left[1 - \tilde{\beta} \left(\mathbf{r} \right) \right] \chi_g^p \left(\mathbf{r} \right) \sum_{g'=1}^G \nu_{g'} \left(\mathbf{r} \right) \Sigma_{f,g'} \left(\mathbf{r}, t \right) \phi_{g'} \left(\mathbf{r}, t \right) + \sum_{i=1}^N \lambda_i \left(\mathbf{r} \right) \chi_{i,g}^d \left(\mathbf{r} \right) C_i \left(\mathbf{r}, t \right) - \Sigma_{t,g} \left(\mathbf{r}, t \right) \phi_g \left(\mathbf{r}, t \right) \\ &\frac{\partial C_i}{\partial t} (\mathbf{r}, t) = \tilde{\beta}_i \left(\mathbf{r} \right) \sum_{g'=1}^G \nu_{g'} \left(\mathbf{r} \right) \Sigma_{f,g'} \left(\mathbf{r}, t \right) \phi_{g'} \left(\mathbf{r}, t \right) - \lambda_i \left(\mathbf{r} \right) C_i \left(\mathbf{r}, t \right), i = 1, \dots, N_d \end{split}$$

and

- Average in **space**:
 - Quantities to be solved for:
 - Volume-averaged scalar neutron flux: $\phi_{g,n}(t) = \frac{1}{V_n} \int_V \phi_g(\mathbf{r}, t) d^3 \mathbf{r}$

• Surface-averaged net neutron current along the direction \aleph : $J_{g,n}^{\aleph}(t) = \frac{1}{S_{n}^{\aleph}} \int_{S^{\aleph}} \mathbf{J}_{g}(\mathbf{r}, t) \cdot \mathbf{N}_{\aleph} d^{2}\mathbf{r}$

>Obtained balance equations (in cartesian coordinate system):

$$\begin{split} &\frac{1}{v_g} \frac{\partial \phi_{g,n}}{\partial t} \left(t \right) = -\sum_{\aleph=x,y,z} \frac{J_{g,n}^{\aleph} \left(t \right) - J_{g,n-1}^{\aleph} \left(t \right)}{\Delta \aleph} - \Sigma_{t,g,n} \left(t \right) \phi_{g,n} \left(t \right) + \sum_{g'=1}^{G} \Sigma_{s0,g' \to g,n} \left(t \right) \phi_{g',n} \left(t \right) \\ &+ \chi_{g,n}^{p} \left(1 - \tilde{\beta}_n \right) \sum_{g'=1}^{G} \nu_{g',n} \Sigma_{f,g',n} \left(t \right) \phi_{g',n} \left(t \right) + \sum_{i=1}^{N_d} \chi_{i,g,n}^{d} \lambda_{i,n} C_{i,n} \left(t \right) \end{split}$$

and

$$\frac{\partial C_{_{i,n}}}{\partial t}\left(t\right) = \tilde{\beta}_{_{i,n}}\sum_{_{g'=1}}^{^{G}}\nu_{_{g',n}}\Sigma_{_{f,g',n}}\left(t\right)\phi_{_{g',n}}\left(t\right) - \lambda_{_{i,n}}C_{_{i,n}}\left(t\right), i = 1, ..., N_{_{d}}$$

Coarse mesh balance equations in thermal-hydraulics

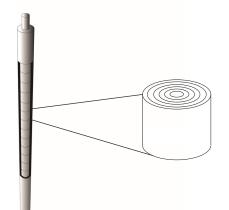
• Average in **space**:

• For the heat conduction equations in solids:

Partitioning of the fuel pins in axial and radial layers:

Volume integration of the heat conduction equation:

$$\frac{1}{V_{i}}\int_{V}\rho\left(\mathbf{r},t\right)c_{p}\left(\mathbf{r},t\right)\frac{\partial\,T}{\partial\,t}\left(\mathbf{r},t\right)d^{3}\mathbf{r} = \frac{1}{V_{i}}\int_{S_{i}}k\left(\mathbf{r},t\right)\boldsymbol{\nabla}\,T\left(\mathbf{r},t\right)\cdot\mathbf{N}\,d^{2}\mathbf{r} + \frac{1}{V_{i}}\int_{V_{i}}q^{\prime\prime\prime\prime}\left(\mathbf{r},t\right)d^{3}\mathbf{r}$$



Picture courtesy of the Swedish Academic Initiative for Radiation Sciences and Nuclear Technology

Coarse mesh balance equations in thermal-hydraulics

- Average in **space**:
 - For the **fluid**:

Use of the **phase density function**:

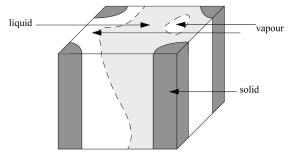
At time
$$t$$
, $\alpha_k(\mathbf{r}, t) = \begin{cases} 1 \text{ if } \mathbf{r} \in \text{phase } k \\ 0 \text{ if } \mathbf{r} \notin \text{phase } k \end{cases}$

Volume integration on the **sub-volumes** occupied by either the **liquid phase** ($k \equiv l$) or the **vapour phase** ($k \equiv v$)

> Two types of averages introduced:

• One-phase average:
$$\langle c_k \rangle_k = \frac{1}{D_k} \int_{D_k} c_k (\mathbf{r}, t) d^n \mathbf{r}$$

• Two-phase average: $\langle c \rangle = \frac{1}{D} \int_{D} c(\mathbf{r}, t) d^n \mathbf{r}$



Coarse mesh balance equations in thermal-hydraulics

- Average in **space**:
 - For the **fluid**:

Obtained balance equations written in a generic sense and for scalar quantities f:

$\frac{\partial}{\partial t} \Big[\beta \left\langle \alpha_k \right\rangle \left\langle \rho_k f_k \right\rangle_k \Big] + \boldsymbol{\nabla} \cdot \Big[\beta \left\langle \alpha_k \right\rangle \left\langle \rho_k f_k \mathbf{v}_k \right\rangle_k \Big] = \beta \left\langle \alpha_k \right\rangle \left\langle \rho_k \theta_k \right\rangle_k - \mathbf{\nabla} \left\{ \beta \left\langle \alpha_k \right\rangle \left\langle \alpha_k \right\rangle_k \right\} \Big] + \mathbf{\nabla} \cdot \left[\beta \left\langle \alpha_k \right\rangle_k \left\langle \alpha_k \right\rangle_k \right] + \mathbf{\nabla} \left\{ \beta \left\langle \alpha_k \right\rangle_k \left\langle \alpha_k \right\rangle_k \right\} \Big] = \beta \left\langle \alpha_k \right\rangle_k \left\{ \beta \left\langle \alpha_k \right\rangle_k \left\langle \alpha_k \right\rangle_k \right\} \Big] + \mathbf{\nabla} \left\{ \beta \left\langle \alpha_k \right\rangle_k \left\langle \alpha_k \right\rangle_k \right\} \Big] = \beta \left\langle \alpha_k \right\rangle_k \left\{ \beta \left\langle \alpha_k \right\rangle_k \left\langle \alpha_k \right\rangle_k \right\} \Big] = \beta \left\langle \alpha_k \right\rangle_k \left\{ \beta \left\langle \alpha_k \right\rangle_k \left\langle \alpha_k \right\rangle_k \right\} \Big\}$	$-\boldsymbol{\nabla}\cdot\left[\beta\left\langle\boldsymbol{\alpha}_{k}\right\rangle\!\left\langle\boldsymbol{\Phi}_{k}\right\rangle_{k}\right]\!-\!\frac{1}{V}\int_{S}\!\left[\rho_{k}f_{k}\left(\boldsymbol{\mathrm{v}}_{k}-\boldsymbol{\mathrm{v}}_{S}\right)\!+\boldsymbol{\Phi}_{k}\right]\!\cdot$	$\mathbf{N}d^{2}\mathbf{r} - \frac{1}{V}\int_{S} \mathbf{\Phi}_{k} \cdot \mathbf{N}d^{2}\mathbf{r}$
	D _{ki}	lo kw

	Conservation of mass	Conservation of momentum	Conservation of energy
f or \mathbf{f}	1	v	e
Φ	0	$-(\mathbf{\tau} - P\mathbf{I})$	$\mathbf{q}'' - (\mathbf{\tau} - P\mathbf{I}) \cdot \mathbf{v}$
θ or θ	0	g	$\frac{q^{\prime\prime\prime}}{\rho} + \mathbf{g.v}$

>Spatial averaging equivalent to a filtering of the small-scale phenomena

Coarse mesh balance equations in thermal-hydraulics

- Average in time (only for the fluid):
 - Two type of averages introduced:

 - Time-average on Δt : $\underline{c} = \frac{1}{\Delta t} \int_{t-\frac{\Delta t}{2}}^{t+\frac{\Delta t}{2}} c(\mathbf{r}, t) dt$ Time-average on Δt_k : $\underline{\underline{c}} = \frac{1}{\Delta t_k} \int_{t-\frac{\Delta t_k}{2}}^{t+\frac{\Delta t}{2}} c(\mathbf{r}, t) dt$
 - Obtained balance equations written in a generic sense and for scalar quantities f:

$$\frac{\partial}{\partial t} \left[\beta \left\langle \underline{\alpha_k} \underline{\left(\rho_k f_k \right)} \right\rangle \right] + \boldsymbol{\nabla} \cdot \left[\beta \left\langle \underline{\alpha_k} \underline{\left(\rho_k f_k \mathbf{v}_k \right)} \right\rangle \right] = \beta \left\langle \underline{\alpha_k} \underline{\left(\rho_k \theta_k \right)} \right\rangle - \boldsymbol{\nabla} \cdot \left[\beta \left\langle \underline{\alpha_k} \underline{\boldsymbol{\Phi}_k} \right\rangle \right] - \frac{1}{V} \underbrace{\int_{S_{ki}} \left[\rho_k f_k \left(\mathbf{v}_k - \mathbf{v}_s \right) + \boldsymbol{\Phi}_k \right] \cdot \mathbf{N} d^2 \mathbf{r}}_{S_{kw}} - \frac{1}{V} \underbrace{\int_{S_{kw}} \mathbf{\Phi}_k \cdot \mathbf{N} d^2 \mathbf{r}}_{S_{kw}} \right] = \beta \left\langle \underline{\alpha_k} \underline{\left(\rho_k \theta_k \right)} \right\rangle - \boldsymbol{\nabla} \cdot \left[\beta \left\langle \underline{\alpha_k} \underline{\boldsymbol{\Phi}_k} \right\rangle \right] - \frac{1}{V} \underbrace{\int_{S_{ki}} \left[\rho_k f_k \left(\mathbf{v}_k - \mathbf{v}_s \right) + \boldsymbol{\Phi}_k \right] \cdot \mathbf{N} d^2 \mathbf{r}}_{S_{kw}} - \frac{1}{V} \underbrace{\int_{S_{kw}} \mathbf{\Phi}_k \cdot \mathbf{N} d^2 \mathbf{r}}_{S_{kw}} \right]$$

>Time averaging equivalent to a filtering of the high-frequency phenomena

• For the **neutronics**:

- Need to chose a proper spatial discretization scheme
- If steady-state conditions assumed: eigenvalue problem by renormalizing the fission source term by k_{eff}

If time-dependence: need to chose a proper time discretization scheme

• For the thermal-hydraulics:

• Need to simultaneously chose a proper **spatial discretization scheme** and **time discretization scheme**

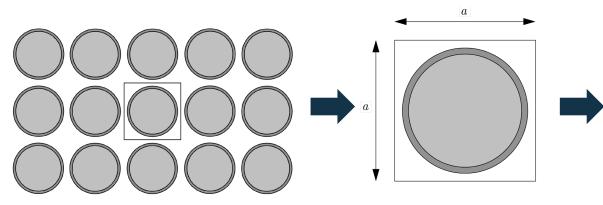
"Closing" the coarse mesh equations

- "Multi-scale" approach followed:
 - 1. Choice of a typical neutron spectrum $\phi_w(E)$
 - 2. Condensation of the microscopic cross-sections on a micro-energy group structure:

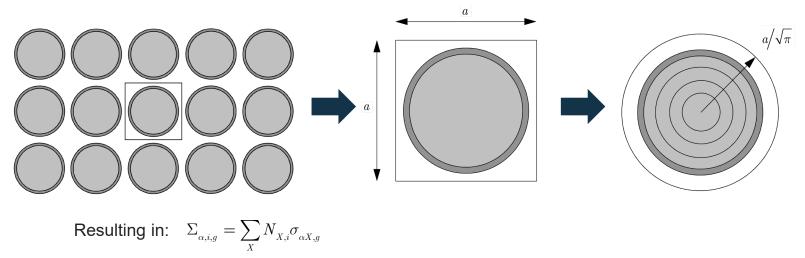
$$\sigma_{_{\alpha X,g}}=\frac{\int_{_{E_{g}}}^{^{E_{g-1}}}\sigma_{_{\alpha X}}\left(E\right)\phi_{_{w}}\left(E\right)dE}{\int_{^{E_{g-1}}}^{^{E_{g-1}}}\phi_{_{w}}\left(E\right)dE}$$

Note: A special treatment is required for resonant species (not detailed here)

- "Multi-scale" approach followed:
 - 3. Small subsystem considered, with micro-regions used for the spatial discretization



- "Multi-scale" approach followed:
 - 3. Small subsystem considered, with micro-regions used for the spatial discretization



- "Multi-scale" approach followed:
 - **4.** Neutron transport equation solved on the micro-energy groups *g* and micro-regions *i* for the subsystem with proper boundary conditions

resulting in $\phi_{i,q}$

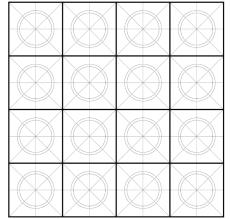
5. Bigger subsystem considered, with macro-regions used for the spatial discretization and macro-groups used for the energy discretization

Condensation of the macroscopic cross-sections:

$$\Sigma_{\alpha,i,G} = \frac{\sum_{g \in G} \Sigma_{\alpha,i,g} \phi_{i,g}}{\sum_{g \in G} \phi_{i,g}}$$

>Homogenization of the macroscopic cross-sections:

$$\Sigma_{\alpha,I,G} = \frac{\sum_{i \in I} \Sigma_{\alpha,i,G} V_i \phi_{i,G}}{\sum_{i \in I} V_i \phi_{i,G}}$$



- "Multi-scale" approach followed:
 - 6. Neutron transport equation solved on the macro-energy groups *G* and macro-regions *I* for the subsystem with proper boundary conditions

resulting in $\phi_{I,G}$

- 7. Condensation and homogenization of the macroscopic cross-sections using the macro-flux $\phi_{I,G}$ on a multi-dimensional mesh compatible with the one of the core simulator
- 8. Estimation of the **critical spectrum** ϕ_{G_p} in the subsystem
- **9.** Re-balancing of the macro-flux $\phi_{I,G}$ on the critical spectrum ϕ_{G_B} :

$$\phi_{I,G}^{L} = \frac{\sum_{G_{B} \in G} \phi_{G_{B}}}{\phi_{G}} \phi_{I,G} \qquad \text{with} \qquad \phi_{G} = \frac{\sum_{I} \phi_{I,G} V_{I}}{\sum_{I} V_{I}}$$

- "Multi-scale" approach followed:
 - **10.** Superimposition of the re-balanced macro-flux $\phi_{I,G}^{L}$ on the micro-flux $\phi_{i,g}$:

$$\phi_{i,g}^{L} = \frac{V_{I}\phi_{I,G}^{L}}{\sum_{i'\in I}V_{i'}\sum_{g'\in G}\phi_{i',g'}}\phi_{i,g}$$

11. Rescaling to the actual **power level** *P* of the system:

$$\phi_{i,g}^{L,P} = \frac{P}{\sum_{i'} V_{i'} \sum_{g'} \phi_{i',g'}^L \sum_X \kappa_X N_{X,i'} \sigma_{fX,i',g'}} \phi_{i,g}^L$$

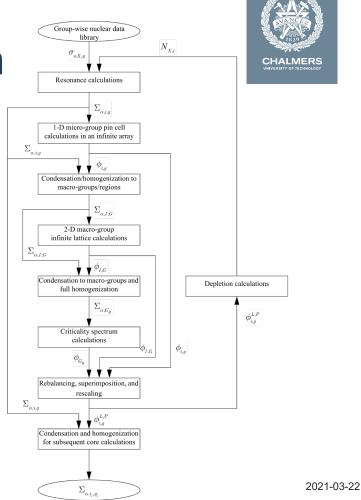
Entire procedure **repeated** for different sets of **local conditions** that cannot be determined for the subsystem:

- **History** effects (burnup *b* inclusive)
- Instantaneous effects

>Macroscopic cross-sections then "functionalized" as:

$$\boldsymbol{\Sigma}_{\scriptscriptstyle \alpha,g}\left(\mathbf{r},t\right)\equiv\boldsymbol{\Sigma}_{\scriptscriptstyle \alpha,g}\left[b\left(\mathbf{r},t\right),HE1\left(\mathbf{r},t\right),HE2\left(\mathbf{r},t\right),\ldots,IE1\left(\mathbf{r},t\right),IE2\left(\mathbf{r},t\right),\ldots\right]$$

• "Multi-scale" approach followed:



Closing the coarse mesh thermalhydraulic equations

• Need to have "consistent" quantities appearing in all balance equations:

• $\langle \underline{\alpha_k} c_k \rangle$ replaced with $\langle \underline{\alpha_k} \rangle \widehat{c_k}$ by defining proper averaging operator:

$$\widehat{c_{\underline{k}}} = \frac{\frac{1}{V} \int_{V} \underline{\underline{\alpha}_{\underline{k}}} \underline{\underline{\alpha}_{\underline{k}}} d^{3} \mathbf{r}}{\frac{1}{V} \int_{V} \underline{\underline{\alpha}_{\underline{k}}} d^{3} \mathbf{r}}$$

• $\left\langle \alpha_{_k}(\rho_{_k}d_{_k}) \right\rangle$ replaced with $\left\langle \underline{\alpha_{_k}} \right\rangle \widehat{\underline{\rho_{_k}d_{_k}}}$ by defining proper averaging operator:

$$\widehat{\underline{d_k}} = \frac{\frac{1}{V} \int_{V} \underline{\underline{\alpha_k}} (\underline{\rho_k d_k}) d^3 \mathbf{r}}{\frac{1}{V} \int_{V} \underline{\underline{\alpha_k}} \underline{\rho_k} d^3 \mathbf{r}}$$

Closing the coarse mesh thermalhydraulic equations

- The previous transformation also introduces **new cross-terms**: $(\mathbf{v}_k \otimes \mathbf{v}_k)$, $(e_k \mathbf{v}_k)$, $(\boldsymbol{\tau}_k \cdot \mathbf{v}_k)$ and
 - Terms handled by assuming that:

$$c_k = \underline{c_k} + c_k'$$
 with $\underline{c_k'} = 0$

• Introducing some other approximations (not detailed here), one obtains:

35

Closing the coarse mesh thermalhydraulic equations

• When looking at the resulting equations:

Too many unknown variables compared to the number of available equations

Need to close the system of equations by introducing empirically-derived closure laws, e.g.:

- For the terms related to transfers at the liquid/vapor interfaces
- For the terms related to transfers between each of the two phases, respectively, and the solid walls
- For the turbulent terms

and by relating some phasic quantities to each other, e.g.

- Temperature
- Pressure

- Modelling of nuclear systems has typically been made focusing on **one physics at a time** (with frozen boundary conditions from the other physics)
- "Less conservative" estimates rely on more faithful coupling strategies where the various physics are equally well described

• Multi-physics problem generically written as (before time discretization):

 $\frac{d\mathbf{u}}{dt}(t) = \mathbf{F}(\mathbf{u}, t)$

• In case of two physics φ_1 and φ_2 , problem solved as:

$$\frac{d\mathbf{u}}{dt}(t) = \mathbf{F}(\mathbf{u}, t)$$

monolithic approach

• Multi-physics problem generically written as (before time discretization):

 $\frac{d\mathbf{u}}{dt}(t) = \mathbf{F}(\mathbf{u}, t)$

• In case of two physics φ_1 and φ_2 , problem solved as:

$$\frac{d}{dt} \begin{bmatrix} \mathbf{u}_{\varphi_1} \left(t \right) \\ \mathbf{u}_{\varphi_2} \left(t \right) \end{bmatrix} = \mathbf{F} \begin{pmatrix} \begin{bmatrix} \mathbf{u}_{\varphi_1} \left(t \right) \\ \mathbf{u}_{\varphi_2} \left(t \right) \end{bmatrix}, t \end{pmatrix} \quad \text{or} \quad \frac{d}{dt} \begin{bmatrix} \mathbf{u}_{\varphi_1} \left(t \right) \\ \mathbf{u}_{\varphi_2} \left(t \right) \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{\varphi_1} \begin{bmatrix} \begin{bmatrix} \mathbf{u}_{\varphi_1} \left(t \right) \\ \mathbf{u}_{\varphi_2} \left(t \right) \end{bmatrix}, t \end{bmatrix} \\ \mathbf{F}_{\varphi_2} \begin{pmatrix} \begin{bmatrix} \mathbf{u}_{\varphi_1} \left(t \right) \\ \mathbf{u}_{\varphi_2} \left(t \right) \end{bmatrix}, t \end{bmatrix}$$

monolithic approach

segregated approach

([(1)])

- Segregated approaches mostly used because of the extensive verification and validation of mono-physics solvers
- Different ways to implement segregated approaches:
 - Exchange of data via input/output files (+ scripts)
 - Exchange of data within the computer memory
 - Mono-physics solvers compiled into one executable
 - Use of a message passing interface

• Remark: using one single software can still rely on segregated approaches

• Multi-physics problem rewritten as:

$$\frac{d}{dt} \begin{bmatrix} \mathbf{u}_{\varphi_1} \left(t \right) \\ \mathbf{u}_{\varphi_2} \left(t \right) \end{bmatrix} = \begin{bmatrix} \mathbf{L}_{\varphi_1} \left(t \right) & 0 \\ 0 & \mathbf{L}_{\varphi_2} \left(t \right) \end{bmatrix} \times \begin{bmatrix} \mathbf{u}_{\varphi_1} \left(t \right) \\ \mathbf{u}_{\varphi_2} \left(t \right) \end{bmatrix} + \dots$$

where dependence on the other physics assumed to be in the non-linearities

• Multi-physics problem rewritten as:

$$\frac{d}{dt} \begin{bmatrix} \mathbf{u}_{\varphi_{1}}\left(t\right) \\ \mathbf{u}_{\varphi_{2}}\left(t\right) \end{bmatrix} = \begin{bmatrix} \mathbf{L}_{\varphi_{1}}\left(t\right) & 0 \\ 0 & \mathbf{L}_{\varphi_{2}}\left(t\right) \end{bmatrix} \times \begin{bmatrix} \mathbf{u}_{\varphi_{1}}\left(t\right) \\ \mathbf{u}_{\varphi_{2}}\left(t\right) \end{bmatrix} + \begin{bmatrix} \mathbf{N}_{\varphi_{1}}\left(\begin{bmatrix} \mathbf{u}_{\varphi_{1}}\left(t\right) \\ \mathbf{u}_{\varphi_{2}}\left(t\right) \end{bmatrix}, t \end{bmatrix}$$

where dependence on the other physics assumed to be in the non-linearities

• Multi-physics problem rewritten as:

$$\frac{d}{dt} \begin{bmatrix} \mathbf{u}_{\varphi_{1}}\left(t\right) \\ \mathbf{u}_{\varphi_{2}}\left(t\right) \end{bmatrix} = \begin{bmatrix} \mathbf{L}_{\varphi_{1}}\left(t\right) & 0 \\ 0 & \mathbf{L}_{\varphi_{2}}\left(t\right) \end{bmatrix} \times \begin{bmatrix} \mathbf{u}_{\varphi_{1}}\left(t\right) \\ \mathbf{u}_{\varphi_{2}}\left(t\right) \end{bmatrix} + \begin{bmatrix} \mathbf{N}_{\varphi_{1}}\left(\begin{bmatrix} \mathbf{u}_{\varphi_{1}}\left(t\right) \\ \mathbf{u}_{\varphi_{2}}\left(t\right) \end{bmatrix}, t \end{bmatrix} \\ \mathbf{N}_{\varphi_{2}}\left(\begin{bmatrix} \mathbf{u}_{\varphi_{1}}\left(t\right) \\ \mathbf{u}_{\varphi_{2}}\left(t\right) \end{bmatrix}, t \end{bmatrix} \end{bmatrix}$$

where dependence on the other physics assumed to be in the non-linearities

• Segregated or operator splitting strategies:

use of each of the mono-physics solvers in their non-altered forms and on some exchange of information/data between the solvers

≻Three basic approaches:

• Non-linearities from the other mono-physics solver evaluated at the previous time step

$$\mathbf{N}_{_{\varphi_k}}\left(\!\!\begin{bmatrix}\mathbf{u}_{_{\varphi_k}}\left(t+\Delta t\right)\\ \mathbf{u}_{_{\varphi_{l\neq k}}}\left(t+\Delta t\right)\!\!\end{bmatrix}\!,t+\Delta t\right) \qquad \text{replaced by} \qquad \mathbf{N}_{_{\varphi_k}}\left(\!\!\begin{bmatrix}\mathbf{u}_{_{\varphi_k}}\left(t+\Delta t\right)\\ \mathbf{u}_{_{\varphi_{l\neq k}}}\left(t\right)\!\!\end{bmatrix}\!,t+\Delta t\right)$$

>Non-linear inconsistencies introduced

Segregated or operator splitting strategies:

use of each of the mono-physics solvers in their non-altered forms and on some exchange of information/data between the solvers

- >Three basic approaches:
 - φ_1 first solved using the non-linearities from the other mono-physics solver φ_2 evaluated at the previous time step $\left(\begin{bmatrix} \mathbf{u}_{\varphi_1} \left(t + \Delta t \right) \\ \mathbf{N}_{\varphi_1} \left(\begin{bmatrix} \mathbf{u}_{\varphi_1} \left(t + \Delta t \right) \\ \mathbf{u}_{\varphi_2} \left(t + \Delta t \right) \end{bmatrix}, t + \Delta t \right)$ replaced by $\mathbf{N}_{\varphi_1} \left(\begin{bmatrix} \mathbf{u}_{\varphi_1} \left(t + \Delta t \right) \\ \mathbf{u}_{\varphi_2} \left(t \right) \end{bmatrix}, t + \Delta t \right)$

 $arphi_2$ then solved using the solution $\mathbf{u}_{_{(2)}}^*\left(t+\Delta t
ight)$ evaluated above at the current time step

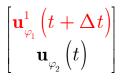
$$\mathbf{N}_{\varphi_{2}}\left(\begin{bmatrix}\mathbf{u}_{\varphi_{1}}\left(t+\Delta t\right)\\\mathbf{u}_{\varphi_{2}}\left(t+\Delta t\right)\end{bmatrix},t+\Delta t\right) \text{ replaced by } \mathbf{N}_{\varphi_{2}}\left(\begin{bmatrix}\mathbf{u}_{\varphi_{1}}^{*}\left(t+\Delta t\right)\\\mathbf{u}_{\varphi_{2}}\left(t+\Delta t\right)\end{bmatrix},t+\Delta t\right)$$

>Non-linear inconsistencies introduced

• Segregated or operator splitting strategies: use of each of the mono-physics solvers in their non-altered forms and on some exchange of information/data between the solvers

≻Three basic approaches:

• Successive updates of the solution vector as:



- Segregated or operator splitting strategies: use of each of the mono-physics solvers in their non-altered forms and on some exchange of information/data between the solvers
- ≻Three basic approaches:
 - Successive updates of the solution vector as:

$$\begin{bmatrix} \mathbf{u}_{\varphi_1}^1 \left(t + \Delta t \right) \\ \mathbf{u}_{\varphi_2} \left(t \right) \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{u}_{\varphi_1}^1 \left(t + \Delta t \right) \\ \mathbf{u}_{\varphi_2}^1 \left(t + \Delta t \right) \end{bmatrix}$$

- Segregated or operator splitting strategies: use of each of the mono-physics solvers in their non-altered forms and on some exchange of information/data between the solvers
- >Three basic approaches:
 - Successive updates of the solution vector as:

$$\begin{bmatrix} \mathbf{u}_{\varphi_{1}}^{1}\left(t+\Delta t\right) \\ \mathbf{u}_{\varphi_{2}}\left(t\right) \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{u}_{\varphi_{1}}^{1}\left(t+\Delta t\right) \\ \mathbf{u}_{\varphi_{2}}^{1}\left(t+\Delta t\right) \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{u}_{\varphi_{1}}^{2}\left(t+\Delta t\right) \\ \mathbf{u}_{\varphi_{2}}^{1}\left(t+\Delta t\right) \end{bmatrix}$$

- Segregated or operator splitting strategies: use of each of the mono-physics solvers in their non-altered forms and on some exchange of information/data between the solvers
- >Three basic approaches:
 - Successive updates of the solution vector as:

$$\begin{bmatrix} \mathbf{u}_{\varphi_{1}}^{1}\left(t+\Delta t\right) \\ \mathbf{u}_{\varphi_{2}}\left(t\right) \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{u}_{\varphi_{1}}^{1}\left(t+\Delta t\right) \\ \mathbf{u}_{\varphi_{2}}^{1}\left(t+\Delta t\right) \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{u}_{\varphi_{1}}^{2}\left(t+\Delta t\right) \\ \mathbf{u}_{\varphi_{2}}^{1}\left(t+\Delta t\right) \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{u}_{\varphi_{1}}^{2}\left(t+\Delta t\right) \\ \mathbf{u}_{\varphi_{2}}^{2}\left(t+\Delta t\right) \end{bmatrix}$$

- Segregated or operator splitting strategies: use of each of the mono-physics solvers in their non-altered forms and on some exchange of information/data between the solvers
- ≻Three basic approaches:
 - Successive updates of the solution vector as:

$$\begin{bmatrix} \mathbf{u}_{\varphi_{1}}^{1}\left(t+\Delta t\right) \\ \mathbf{u}_{\varphi_{2}}\left(t\right) \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{u}_{\varphi_{1}}^{1}\left(t+\Delta t\right) \\ \mathbf{u}_{\varphi_{2}}^{1}\left(t+\Delta t\right) \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{u}_{\varphi_{1}}^{2}\left(t+\Delta t\right) \\ \mathbf{u}_{\varphi_{2}}^{1}\left(t+\Delta t\right) \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{u}_{\varphi_{1}}^{2}\left(t+\Delta t\right) \\ \mathbf{u}_{\varphi_{2}}^{2}\left(t+\Delta t\right) \end{bmatrix} \rightarrow \dots \rightarrow \begin{bmatrix} \mathbf{u}_{\varphi_{1}}^{n}\left(t+\Delta t\right) \\ \mathbf{u}_{\varphi_{2}}^{n-1}\left(t+\Delta t\right) \end{bmatrix}$$

 Segregated or operator splitting strategies: use of each of the mono-physics solvers in their non-altered forms and on some exchange of information/data between the solvers

≻Three basic approaches:

• Successive updates of the solution vector as:

$$\begin{bmatrix} \mathbf{u}_{\varphi_{1}}^{1}\left(t+\Delta t\right) \\ \mathbf{u}_{\varphi_{2}}\left(t\right) \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{u}_{\varphi_{1}}^{1}\left(t+\Delta t\right) \\ \mathbf{u}_{\varphi_{2}}^{1}\left(t+\Delta t\right) \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{u}_{\varphi_{1}}^{2}\left(t+\Delta t\right) \\ \mathbf{u}_{\varphi_{2}}^{1}\left(t+\Delta t\right) \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{u}_{\varphi_{1}}^{2}\left(t+\Delta t\right) \\ \mathbf{u}_{\varphi_{2}}^{2}\left(t+\Delta t\right) \end{bmatrix} \rightarrow \dots \rightarrow \begin{bmatrix} \mathbf{u}_{\varphi_{1}}^{n}\left(t+\Delta t\right) \\ \mathbf{u}_{\varphi_{2}}^{n-1}\left(t+\Delta t\right) \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{u}_{\varphi_{1}}^{n}\left(t+\Delta t\right) \\ \mathbf{u}_{\varphi_{2}}^{n}\left(t+\Delta t\right) \end{bmatrix} \rightarrow \dots \rightarrow \begin{bmatrix} \mathbf{u}_{\varphi_{1}}^{n}\left(t+\Delta t\right) \\ \mathbf{u}_{\varphi_{2}}^{n}\left(t+\Delta t\right) \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{u}_{\varphi_{1}}^{n}\left(t+\Delta t\right) \\ \mathbf{u}_{\varphi_{2}}^{n}\left(t+\Delta t\right) \end{bmatrix} \rightarrow \dots \rightarrow \begin{bmatrix} \mathbf{u}_{\varphi_{1}}^{n}\left(t+\Delta t\right) \\ \mathbf{u}_{\varphi_{2}}^{n}\left(t+\Delta t\right) \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{u}_{\varphi_{2}}^{n}\left(t+\Delta t\right) \\ \mathbf{u}_{\varphi_{2}}^{n}\left(t+\Delta t\right) \\ \mathbf{u}_{\varphi_{2}}^{n}\left(t+\Delta t\right) \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{u}_{\varphi_{2}}^{n}\left(t+\Delta t\right) \\$$

>Non-linear inconsistencies resolved

Convergence usually slow/difficult

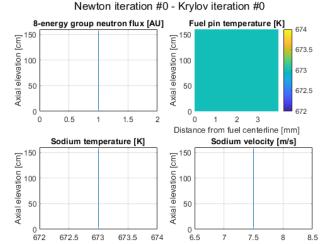
• **Monolithic** approaches:

Entire multi-physics problem rewritten as "one" problem:

 $\mathbf{H}\big(\mathbf{u}\big(t+\Delta t\big)\big) = \mathbf{0}$

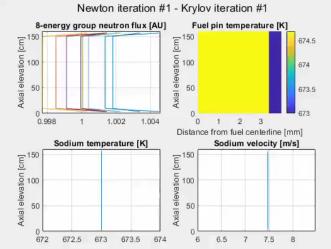
Due to the different time scales and characteristic lengths of each physics, the problem is often ill-conditioned: need to pre-condition the problem

 Example of a 1-dimensional heterogeneous model of a sodium-cooled fast reactor in steady-state conditions:



Integrated approach (Jacobian Free Newton Krylov method)

 Example of a 1-dimensional heterogeneous model of a sodium-cooled fast reactor in steady-state conditions:



Integrated approach (Jacobian Free Newton Krylov method)

Conclusions and outlook

Conclusions and outlook

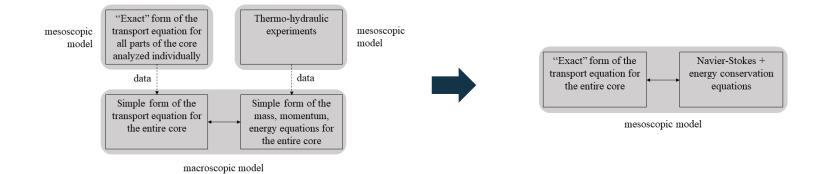
- "Multi-scale" approach followed:
 - Neutronics: subsystems solved at various levels of refinement before modelling the entire system
 - Thermal-hydraulics: modelling of only the large-scale phenomena with the small-scale (and high-frequency) phenomena considered via experimentally-derived correlations

• Multi-physics coupling:

- Segregated approaches:
 - Pros: Extensive V&V + codes tuned to a specific purpose
 - Cons: Reaching convergence might be challenging + codes tuned to a specific purpose
- Monolithic approaches:
 - Pros: Better control of convergence
 - Cons: Robustness of the methods might be challenging

Conclusions and outlook

• On-going international efforts to **couple the physics** at the **small scales**:



Deterministic modelling of nuclear systems Spring School on Sodium Cooled Fast Reactors University of Cambridge, March 29th-31st, 2021 – online

Prof. Christophe Demazière demaz@chalmers.se

Learn more about reactor modelling: (Elsevier/Academic Press book)

Modelling of Nuclear Reactor Multi-physics

From Local Balance Equations to Macroscopic Models in Neutronics and Thermal-Hydraulics

Christophe Demazière

TASK FORCE ON DETERMINISTIC REACTOR MODELLING