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Structure of the presentation
• Introduction

• Reminder about the local balance equations in neutronics and thermal-hydraulics

• Derivation of the coarse mesh balance equations

• Closing the system of equations

• Solving the system of equations
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Introduction
• Nuclear reactor systems = large and complex systems

• Strongly heterogeneous systems, especially for the core, with different scales, by design
and due to the physical phenomena involved, such as:

• Neutron interactions at the atomic scale
• Turbulence and boiling at the millimeter scale
• Pins at the centimeter scale
• Assembly at the decimeter scale
• Core at the meter scale

Multi-scale and multi-physics systems

Strangely enough for the neutronics, the deterministic modelling of such systems relies on 
the principles of continuum physics
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Introduction
• How to model such systems?

… the large size requires a coarse mesh modelling

… phenomena at the local scales influence the global scales
Need to construct a modelling framework preserving the multi-scale phenomena while 

only resolving the global multi-physics problem

Lecture focusing on neutronics and thermal-hydraulics
• Disclaimer: lecture focusing on the rational behind the modelling approach rather than on 

how the modelling is done
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Reminder about the local 
balance equations
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Reminder about the local balance 
equations in neutronics
• Local balance equations in neutronics given by the neutron transport equation or 

Boltzmann equation:

with
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Reminder about the local balance 
equations in neutronics
• Complex equations:

• Integro-differential equations
• Multi-dimensional phase space for the variable, i.e.
• The macroscopic cross-section data, defined as:

have a complex dependence on energy
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Reminder about the local balance 
equations in neutronics
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Energy-dependence of the 
microscopic absorption cross-
section for 238U (JEFF 3.1 neutron 
data library)
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Reminder about the local balance 
equations in thermal-hydraulics
• Local balance equations in thermal-hydraulics given:

• In the fluid, by the Navier-Stokes equations complemented by an “energy” conservation equation:

• In the solids, by the heat conduction equation:
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Reminder about the local balance 
equations in thermal-hydraulics
• Local balance equations in thermal-hydraulics complemented by:

• Equation of state for the fluid, such as:

• Constitutive equations for the fluid, such as:

• Constitutive equations for the solids, such as:
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Reminder about the local balance 
equations in thermal-hydraulics
• Note about the constitutive equations:

• The constitutive equations are based either on first principles or phenomenological principles
• Obtaining such equations often relies on experiments
Such constitutive equations thus often depend on the specific conditions on the experiments
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Coarse mesh balance 
equations
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Coarse mesh balance equations
• Due to the complexity of the systems and their size, need to average the local balance 

equations on a proper multi-dimensional grid:

• For the neutronics:
• Average in space (homogenization)
• Average in angle
• Average in energy (condensation)

• For the thermal-hydraulics:
• Average in space
• Average in time
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Coarse mesh balance equations
• Example of the averaging in space:
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Coarse mesh balance equations
• The averaging of the equations need to preserve “meaningful” quantities, so that solving 

the averaged equations lead to the true averages of the quantities of interest

Far from trivial task, especially for the neutronics
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Coarse mesh balance equations in 
neutronics
• Average in angle: in essence, procedure equivalent to:

• Integrating the transport equation on all solid angles
• Replacing the isotropic scattering cross-section by its transport corrected value:

• Solving for the scalar neutron flux:

and for the neutron current density vector:

• Assume proportionality between the neutron current density vector and the gradient of the 
scalar neutron flux (Fick’s law):
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Coarse mesh balance equations in 
neutronics
• Average in angle: in essence, procedure equivalent to:

• Note: A more rigorous approach is to first derive the so-called P1 approximation of the transport 
equation and to assume equal anisotropic in-scatter and out-scatter at every energy

Obtained balance equations:

and
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Coarse mesh balance equations in 
neutronics
• Average in energy:

• The neutron energy range of interest                   is divided into       adjacent energy groups:

• All energy-dependent quantities are integrated with respect to energy on such energy groups using 
proper weighting functions

• Obtained balance equations:

and
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Coarse mesh balance equations in 
neutronics
• Average in space:

• Quantities to be solved for:
• Volume-averaged scalar neutron flux:

• Surface-averaged net neutron current along the direction    :

Obtained balance equations (in cartesian coordinate system):

and
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Coarse mesh balance equations in 
thermal-hydraulics
• Average in space:

• For the heat conduction equations in solids:

Partitioning of the fuel pins in axial and radial layers:

Volume integration of the heat conduction equation:
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Coarse mesh balance equations in 
thermal-hydraulics
• Average in space:

• For the fluid:
Use of the phase density function:

Volume integration on the sub-volumes occupied by either the liquid phase (        )
or the vapour phase (         )

Two types of averages introduced:
• One-phase average:

• Two-phase average:
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Coarse mesh balance equations in 
thermal-hydraulics
• Average in space:

• For the fluid:
Obtained balance equations written in a generic sense and for scalar quantities    :

Spatial averaging equivalent to a filtering of the small-scale phenomena
23
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Coarse mesh balance equations in 
thermal-hydraulics
• Average in time (only for the fluid):

• Two type of averages introduced:

• Time-average on       : 

• Time-average on        : 

• Obtained balance equations written in a generic sense and for scalar quantities    :

Time averaging equivalent to a filtering of the high-frequency phenomena
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Coarse mesh balance equations
• For the neutronics:

• Need to chose a proper spatial discretization scheme
• If steady-state conditions assumed: eigenvalue problem by renormalizing the fission source term 

by
If time-dependence: need to chose a proper time discretization scheme 

• For the thermal-hydraulics:
• Need to simultaneously chose a proper spatial discretization scheme and time discretization 

scheme

25
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“Closing” the coarse mesh 
equations

26
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Macroscopic cross-section 
generation in neutronics
• “Multi-scale” approach followed:

1. Choice of a typical neutron spectrum
2. Condensation of the microscopic cross-sections on a micro-energy group structure:

Note: A special treatment is required for resonant species (not detailed here)

27

 w
E

   

 

1

1
,

g

g

g

g

E

wE

X g E

wE

X
E E dE

E dE






















2021-03-22

Macroscopic cross-section 
generation in neutronics
• “Multi-scale” approach followed:

3. Small subsystem considered, with micro-regions used for the spatial discretization

28
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Macroscopic cross-section 
generation in neutronics
• “Multi-scale” approach followed:

3. Small subsystem considered, with micro-regions used for the spatial discretization

Resulting in:
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Macroscopic cross-section 
generation in neutronics
• “Multi-scale” approach followed:

4. Neutron transport equation solved on the micro-energy groups     and micro-regions for the 
subsystem with proper boundary conditions
resulting in 

5. Bigger subsystem considered, with macro-regions used for the spatial discretization and 
macro-groups used for the energy discretization
Condensation of the macroscopic cross-sections:

Homogenization of the macroscopic cross-sections:
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Macroscopic cross-section 
generation in neutronics
• “Multi-scale” approach followed:

6. Neutron transport equation solved on the macro-energy groups     and macro-regions for the 
subsystem with proper boundary conditions
resulting in 

7. Condensation and homogenization of the macroscopic cross-sections using the macro-flux
on a multi-dimensional mesh compatible with the one of the core simulator

8. Estimation of the critical spectrum       in the subsystem
9. Re-balancing of the macro-flux on the critical spectrum       :

with
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Macroscopic cross-section 
generation in neutronics
• “Multi-scale” approach followed:

10. Superimposition of the re-balanced macro-flux         on the micro-flux :

11. Rescaling to the actual power level of the system:

Entire procedure repeated for different sets of local conditions that cannot be determined for the 
subsystem:

• History effects (burnup    inclusive)
• Instantaneous effects

Macroscopic cross-sections then “functionalized” as: 
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Macroscopic cross-section 
generation in neutronics
• “Multi-scale” approach followed:
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Closing the coarse mesh thermal-
hydraulic equations
• Need to have “consistent” quantities appearing in all balance equations:

• replaced with             by defining proper averaging operator:

• replaced with               by defining proper averaging operator:
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Closing the coarse mesh thermal-
hydraulic equations
• The previous transformation also introduces new cross-terms:             ,        ,            and

• Terms handled by assuming that:
with

• Introducing some other approximations (not detailed here), one obtains:
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Closing the coarse mesh thermal-
hydraulic equations
• When looking at the resulting equations:

Too many unknown variables compared to the number of available equations
Need to close the system of equations by introducing empirically-derived closure laws,

e.g.:
• For the terms related to transfers at the liquid/vapor interfaces
• For the terms related to transfers between each of the two phases, respectively, and the solid walls
• For the turbulent terms

and by relating some phasic quantities to each other, e.g.
• Temperature
• Pressure
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Resolving the multi-
physics interdependencies
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Resolving the multi-physics 
interdependencies
• Modelling of nuclear systems has typically been made focusing on one physics at a time 

(with frozen boundary conditions from the other physics)

• “Less conservative” estimates rely on more faithful coupling strategies where the 
various physics are equally well described
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Resolving the multi-physics 
interdependencies
• Multi-physics problem generically written as (before time discretization):

• In case of two physics       and      , problem solved as:

monolithic approach
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Resolving the multi-physics 
interdependencies
• Multi-physics problem generically written as (before time discretization):

• In case of two physics       and      , problem solved as:

or 

monolithic approach segregated approach
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Resolving the multi-physics 
interdependencies
• Segregated approaches mostly used because of the extensive verification and validation 

of mono-physics solvers

• Different ways to implement segregated approaches:
• Exchange of data via input/output files (+ scripts)
• Exchange of data within the computer memory

• Mono-physics solvers compiled into one executable
• Use of a message passing interface

• Remark: using one single software can still rely on segregated approaches
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Resolving the multi-physics 
interdependencies
• Multi-physics problem rewritten as:

where dependence on the other physics assumed to be in the non-linearities
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Resolving the multi-physics 
interdependencies
• Multi-physics problem rewritten as:

where dependence on the other physics assumed to be in the non-linearities
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Resolving the multi-physics 
interdependencies
• Multi-physics problem rewritten as:

where dependence on the other physics assumed to be in the non-linearities
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Resolving the multi-physics 
interdependencies
• Segregated or operator splitting strategies:

use of each of the mono-physics solvers in their non-altered forms and on some exchange 
of information/data between the solvers

Three basic approaches:
• Non-linearities from the other mono-physics solver evaluated at the previous time step

replaced by

Non-linear inconsistencies introduced
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Resolving the multi-physics 
interdependencies
• Segregated or operator splitting strategies:

use of each of the mono-physics solvers in their non-altered forms and on some exchange 
of information/data between the solvers

Three basic approaches:
• first solved using the non-linearities from the other mono-physics solver       evaluated at the 

previous time step
replaced by

then solved using the solution                       evaluated above at the current time step

replaced by

Non-linear inconsistencies introduced
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Resolving the multi-physics 
interdependencies
• Segregated or operator splitting strategies:

use of each of the mono-physics solvers in their non-altered forms and on some exchange 
of information/data between the solvers

Three basic approaches:
• Successive updates of the solution vector as:
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Resolving the multi-physics 
interdependencies
• Segregated or operator splitting strategies:

use of each of the mono-physics solvers in their non-altered forms and on some exchange 
of information/data between the solvers

Three basic approaches:
• Successive updates of the solution vector as:
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Resolving the multi-physics 
interdependencies
• Segregated or operator splitting strategies:

use of each of the mono-physics solvers in their non-altered forms and on some exchange 
of information/data between the solvers

Three basic approaches:
• Successive updates of the solution vector as:
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Resolving the multi-physics 
interdependencies
• Segregated or operator splitting strategies:

use of each of the mono-physics solvers in their non-altered forms and on some exchange 
of information/data between the solvers

Three basic approaches:
• Successive updates of the solution vector as:
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Resolving the multi-physics 
interdependencies
• Segregated or operator splitting strategies:

use of each of the mono-physics solvers in their non-altered forms and on some exchange 
of information/data between the solvers

Three basic approaches:
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Resolving the multi-physics 
interdependencies
• Segregated or operator splitting strategies:

use of each of the mono-physics solvers in their non-altered forms and on some exchange 
of information/data between the solvers

Three basic approaches:
• Successive updates of the solution vector as:

Non-linear inconsistencies resolved
Convergence usually slow/difficult
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Resolving the multi-physics 
interdependencies
• Monolithic approaches:

Entire multi-physics problem rewritten as “one” problem:

Due to the different time scales and characteristic lengths of each physics, the problem is 
often ill-conditioned: need to pre-condition the problem

  t t H u 0
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Resolving the multi-physics 
interdependencies
• Example of a 1-dimensional heterogeneous model of a sodium-cooled fast reactor in 

steady-state conditions:

Integrated approach (Jacobian Free Newton Krylov method)
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Conclusions and outlook
• “Multi-scale” approach followed:

• Neutronics: subsystems solved at various levels of refinement before modelling the entire system
• Thermal-hydraulics: modelling of only the large-scale phenomena with the small-scale (and high-

frequency) phenomena considered via experimentally-derived correlations

• Multi-physics coupling:
• Segregated approaches:

• Pros: Extensive V&V + codes tuned to a specific purpose
• Cons: Reaching convergence might be challenging + codes tuned to a specific purpose

• Monolithic approaches:
• Pros: Better control of convergence
• Cons: Robustness of the methods might be challenging
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Conclusions and outlook
• On-going international efforts to couple the physics at the small scales:



Deterministic modelling of nuclear 
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