

Jiri Krepel :: Advanced Nuclear System Group :: Paul Scherrer Institut

Session 3-1: ESFR Core & Fuel Coupled core T-H & neutronics simulation

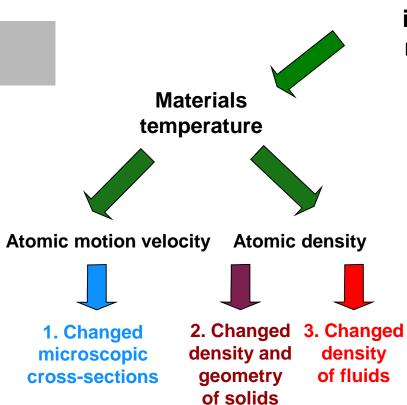
ESFR-Smart Spring School - 29 -31 March, Cambridge, Zoom webinar

Objective of the presentation

- Importance of steady state and transient coupled simulations
- II. Brief overview on interaction between neutronics and Thermal-Hydraulics (TH)
- III. Selected issues of coupled modeling

T-H & neutronics simulation: steady state

- **Coupling in steady state** is important from conceptual and safety perspective:
 - To assure balanced outlet fuel temperature (sodium flow orificing).
 - To identify hot spots and assess fuel performance.
 - To assure that overall reactivity introduced by increase of power or inlet sodium temperature is negative.
 - To assure sufficient shut-down reactivity margin and avoid re-criticality by cooling.
- Cold reactor at zero power has different reactivity than hot reactor at zero power.
- Reactor at nominal power has difference reactivity than hot reactor at zero power.



T-H & neutronics simulation: transients

- Coupled neutronics and TH simulation should prove acceptable behavior of the ESFR-SMART core during nominal and transient situation.
- At best there should be **no chance** that transient will result in **reactivity runaway**. (Positive temperature feedbacks, like in RBMK or PHWR reactors, should be avoided)
- In transient case the tight coupling of neutronics and TH is necessary especially when both independent **reactor shut-down mechanisms fail**. (other way the neutronics is limited to decay heat curve)
- Should this failure by combined with, e. g., loss-of-flow event the resulting transient is highly nonlinear and requires tight coupling of neutronics and TH.
- Keep in mind that we speak about double-failure, which can be eventually
 acceptable for regulator because of its low probability.

Interaction between Neutronics and TH

TH impacts on neutronics

Type of: Impact

Impacted property / medium

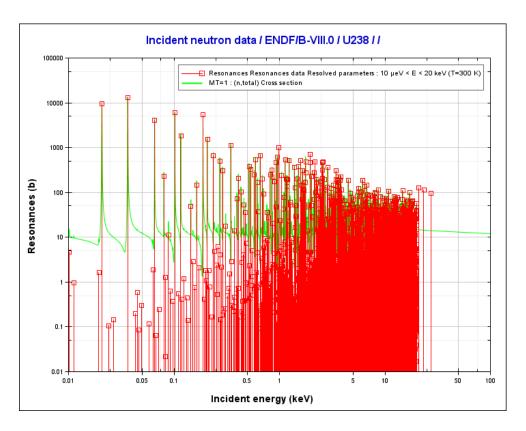
Impact mechanism

Fluids velocity

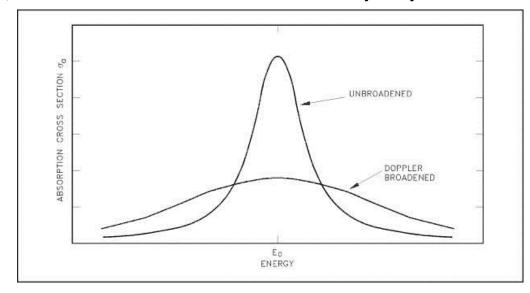
Moving of coolant atoms

Negligible impact (particle motion velocity >> fluids velocity)

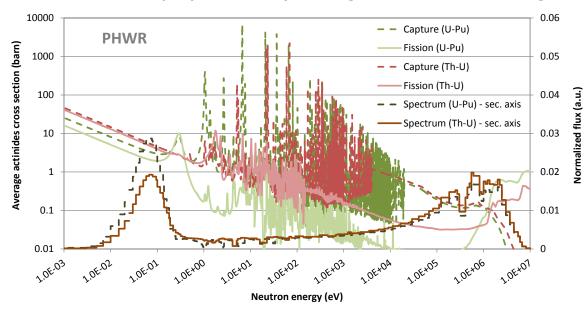
Moving of fuel atoms



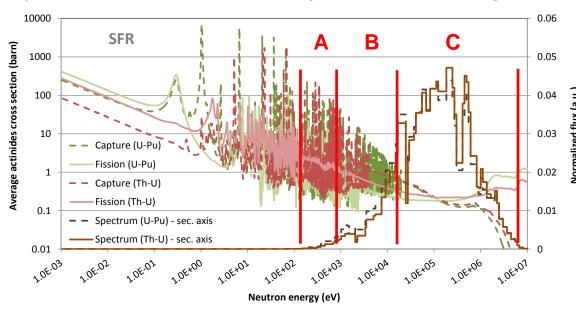
Drift of delayed neutron precursors (issue for MSR)


- XS is a measure of probability than neutron will interact with the atom (nucleus).
- XS has resonances

 (at certain mutual velocities the interaction probability is higher)
- Resonances are based on internal structure of the nucleus and more frequent for heavier elements.
- Resonances are the reason for energetic self-shielding and local shape of neutron spectrum.

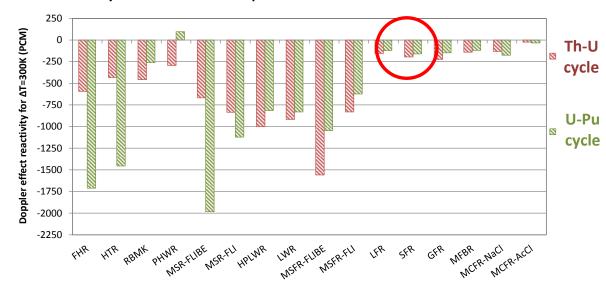


- XS depends on the mutual velocity of the nucleus and neutron.
- Nucleus motion velocity depends on the material temperature.
- Convention is so that **XS** are plotted / used as a **function of neutron velocity only**.
- The impact of nucleus velocity is included in the actual XS data.
 Accordingly, the nuclei thermal motion is smearing the XS =>
- The Doppler-broadening of resonances is the main cause of spectral changes and fastest mechanisms of TH impact on XS.



- The **impact of resonances broadening** depends on the **spectrum type**.
- In thermal spectrum (e.g. Pressurized Heavy Water Reactor PHWR) it reduces the resonance escape probability during the neutron slowing down process.

- The **impact of resonances broadening** depends on the **spectrum type**.
- In fast spectrum (e.g. Sodium Fast Reactor SFR) it increases neutron capture in the spectrum tail and shifts so the spectrum towards higher energies.


Doppler broadening impact:

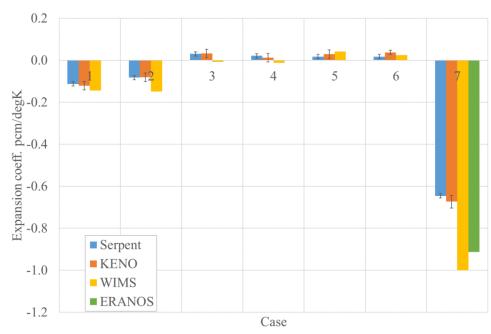
- A Flux reduction dominates
- **B** XS increase dominates
- **C** Flux increase dominates

Křepel, J., et al., 2011. Comparison of safety related parameters of Generation-IV fast reactors in equilibrium closed cycle, Global 2011, Japan, Dec. 11-16,


- **Doppler broadening of XS** result in **negative reactivity** practically in all reactor with substantial share of heavy nuclei with capture XS resonances (238U and 232Th).
- As an example reactivity introduced by **300K** fuel temperature increase is shown.
- The figure shows results for iso-breeding fuel composition. It is not a value for standard fuel composition.
- No time to discuss PHWR.
 Have a look on the
 paper or on the fission XS
 resonance 2 slides above.

2. Changed density and geometry of solids

- Temperature increase of solid materials results in their thermal expansion.
- Active core is delimited by fuel presence.
- Active core **axial** expansion is driven by **fuel or cladding temperature**. (cladding temperature drives fuel position in case of closed gap between them)
- Active core radial expansion is driven by diagrid expansion and assemblies flowering effect.
- Non-fuel solid materials can expand:
 - outwards from the active core, e.g., cladding with open gap
 - inwards to the active core, e.g., control rods and control rods drivers expansion
- Expansion of solid materials can expel fluids from the core.
 - e. g., cladding radial expansion expels sodium from the core.
 - in rare cases it can be the opposite, e. g., fluid in expanding tubes.

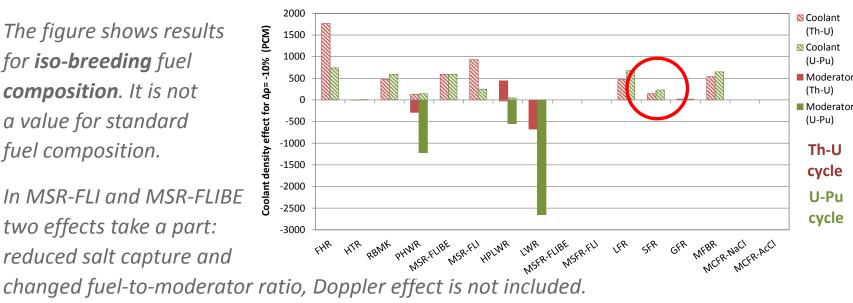


2. Changed density and geometry of solids

• ESFR-SMART thermal expansion coefficients:

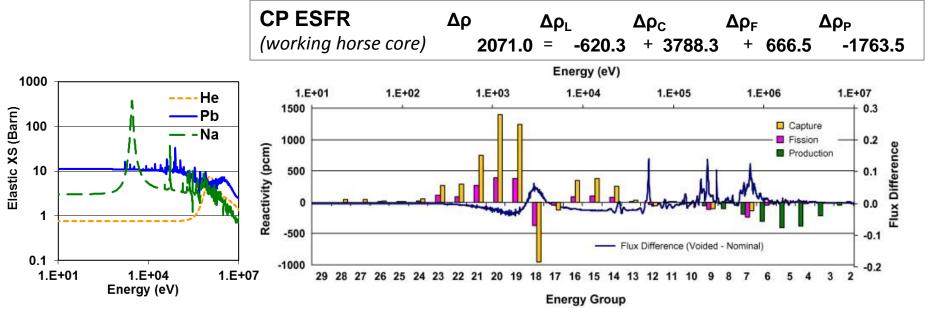
- 1. Axial fuel expansion (inner zone).
- Axial fuel expansion (outer zone). (increased cladding and sodium mass)
- 3. Axial cladding expansion (inner z.).
- 4. Axial cladding expansion (outer z.). (decreased cladding mass)
- 5. Radial cladding expansion inner z.).
- 6. Radial cladding expansion (outer z.). (decreased sodium mass)
- 7. Diagrid expansion (increased sodium mass)

3. Control rods drivers expansion (not shown) introduces negative reactivity.


3. Changed density of fluids

- Fluids can have 3 functions in the active core:
 - 1. Coolant
 - 2. Moderator
 - **3.** Fuel (in MSR case)
- Fluid temperature increase does not change the core geometry,
- but it reduces density and so scattering and capture XS of the fluid.
 (and fission XS in case of fluid fuel MSR)
- Reduced capture XS = always positive reactivity
 Reduced scattering XS = spectrum hardening (different reactivity in different spectra)

3. Changed density of fluids


- **Decreased density** result typically in **positive reactivity.** Only for moderating fluid it is negative (reduced scattering XS dominate).
- As an example **10% density reduction** is shown. (infinite lattice simulation = 0 for hom. reactors)
- The figure shows results for **iso-breeding** fuel composition. It is not a value for standard fuel composition.
- In MSR-FLI and MSR-FLIBE two effects take a part: reduced salt capture and

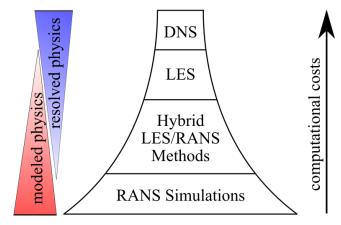
3. Sodium density reduction

- Sodium has few resonances, biggest at 3KeV. Other way its scattering XS is quite low. (It is comparable to deuterium. Sodium is not a moderator because its mass and capture prob. is higher.)
- Sodium density reduction (voiding) locally change the spectrum and results in decrease of fission and capture rate and increased neutron leakage:

Neutronics

X

TH solvers


Deterministic approach:

- Multi-group XS are generated by a cell / lattice code for given temperatures and compositions. Alternatively, a multi-group XS database is prepared for many temperatures and compositions.
- 2. XS are applied in **nodal solver** based, e.g., on diffusion or simplified transport and regular square or Hex-Z nodes.
- 3. XS are applied in solvers based on Method of characteristic (MOC), Finite element method (FEM), Finite volume method (FVM), Finite difference method (FDM).

• Stochastic approach:

1. Monte-Carlo method for neutron transport direct solution using point-wise XS.

• CFD approach:

Xiao H., 2018, Quantification of Model Uncertainty in RANS Simulations: A Review

System code with 1D channel-wise resolution:

(TRACE, RELAP, etc.)

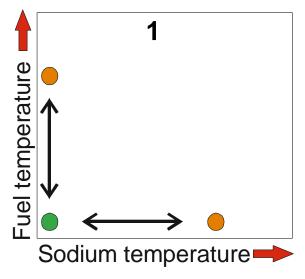
Core only 1D channel-wise resolution

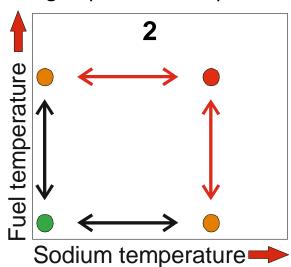
Coupling of Neutronics & TH solvers

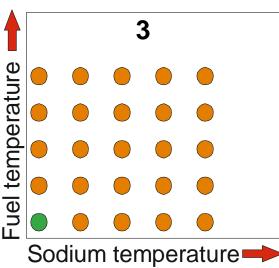
- 1. Ultimate solution: CFD solver can be tightly coupled with Monte Carlo solver. In this most exact but also most demanding case point-wise XS are used.
- Challenging solution: CFD solver can be tightly coupled with deterministic MOC, FEM, FVM, or FDM solver.
- **3. Standard solution: 1D channel-wise system code** can be coupled with deterministic **nodal solver** (core represented by rigid nodal 3D geometry).
- **4. Simplified solution: 1D channel-wise system code** can be coupled with point kinetics model (neutronics represented only by integral properties).
- Coupling interface: 1) none* direct use of temperature field and atomic concentrations 2&3) temperature dependent local multi-group XS or temperature and atomic concentration dependent multi-group XS library.
 - 4) temperature dependent **distributed coefficients** or just **integral coefficients**.

^{*} Actually, even the XS for Monte Carlo code needs to be "prepared" for different temperatures.

Didn't we missed something?


- 1. Modeling of **thermal expansions** is necessary to couple neutronics & TH.
- 2. The **Thermal-Mechanics model** also has several possible level of accuracy.
- 3. Usually the **Multi-group XS** (as well as the point-kinetics coefficients) are generated by a cell / lattice code (or full core code) using "manually" **expanded geometry**.
- **4.** Thermal-Mechanics model is often the one mostly restricted by the selected simulation approach and geometry. (e.g., nodal solvers cannot model flowering)
- 5. However, the two major players: **Doppler effect and Sodium density effect do not change** the geometry.




Coupling through: Multi-group XS or coefficients

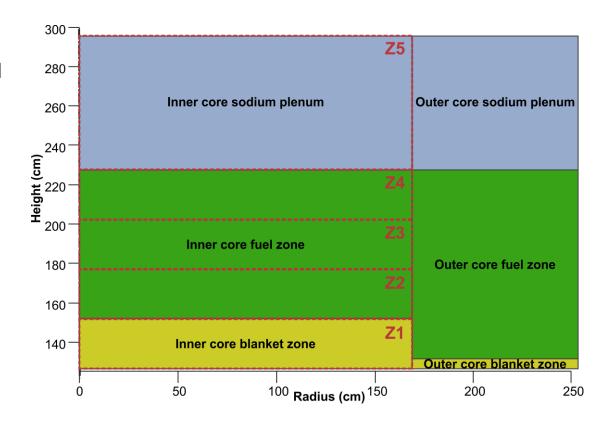
The major players: Doppler effect and Sodium density effect are fairly independent.

- 1. Accordingly, **multi-group XS** or coefficient are often based on **nominal value** and **derivatives**. Actual XS value is obtained by linear and logarithmic interpolations.
- 2. More precise would be bi-interpolation based on four values (needs 1 more point).
- 3. Often also tabulated multi-group XS and interpolation are used.

Issue with reactivity coefficients

- Multi-group XS are not perfect, but capture well the local conditions.
- Coupling through Multi-group XS addresses possible changes in flux shape and spectrum.
- Point kinetics assumes that
 - 1) flux can be separated into amplitude and shape function
 - 2) and the shape function is constant during transient.
 - To illustrate that let us use one group neutron flux:

$$\Phi(\vec{r},t) = vn(t)\Psi(\vec{r})$$


where v is the neutron velocity, n(t) neutron density, $\Psi(\vec{r})$ the flux shape function.

- During the unprotected loss of flow sodium boiling can occur.
- Shape function can change and application of point kinetics is thus questionable.
- To address it, the **additivity and correlation** of partial effect should be checked.

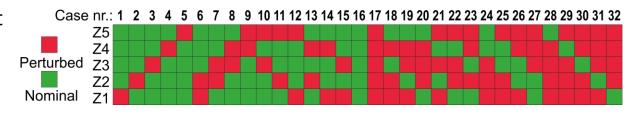
ESFR-SMART core division into zones

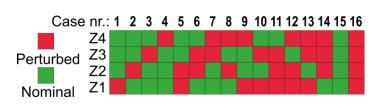
 Mutual inter dependence and additivity was checked using 5 axial zones in the internal fuel zone of ESFR-SMART core.

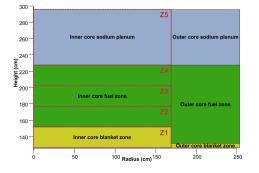
Perturbation of the zones

- For sodium void effect all 5 zones were used.
- There are 32 possible voiding option.
- For other effect:

 Fuel temperature,


 Fuel density, and


 Cladding density


 only the 4 core zones

 have been used,

 resulting in 16 combinations.

Void mutual inter dependence

- The void effect is positive in the core and negative in the sodium plenum.
- strongest mutual inter dependence was identified for upper core part Z4 and plenum Z5.

	Void effect		Impact of other zones on the main zone effect in %													
	Main Zone	2 zones (e.g. Z1+Z2)				3 zones (e.g. Z1+Z2+Z3)				4 zones				5 zones		
	7,7	Z2	Z3	Z4	Z5	Z2,Z3	Z2,Z4	Z2,Z5	Z3,Z4	Z3,Z5	Z4,Z5	Z2,Z3,Z4	Z2,Z3,Z5	Z2,Z4,Z5	Z3,Z4,Z5	Z2,Z3,Z4,Z5
	7.4 (PCM)	-2	-24	-13	6	4	-5	22	-29	4	5	-19	15	21	3	14
/	Z2	Z1	Z3	Z4	Z5	Z1,Z3	Z1,Z4	Z1,Z5	Z3,Z4	Z3,Z5	Z4,Z5	Z1,Z3,Z4	Z1,Z3,Z5	Z1,Z4,Z5	Z3,Z4,Z5	Z1,Z3,Z4,Z5
	266.0 (PCM)	0	9	1	5	9	1	6	10	-1	7	10	-1	8	-1	-1
	Z 3	Z1	Z2	Z4	Z5	Z1,Z2	Z1,Z4	Z1,Z5	Z2,Z4	Z2,Z5	Z4,Z5	Z1,Z2,Z4	Z1,Z2,Z5	Z1,Z4,Z5	Z2,Z4,Z5	Z1,Z2,Z4,Z5
\	470.6 (PCM)	0	5	3	-9	5	3	-9	8	-13	-8	8	-13	-8	-12	-12
	Z4 /	Z1	Z2	Z3	Z5	Z1,Z2	Z1,Z3	Z1,Z5	Z2,Z3	Z2,Z5	Z3,Z5	Z1,Z2,Z3	Z1,Z2,Z5	Z1,Z3,Z5	Z2,Z3,Z5	Z1 Z2,Z3,Z5
	137.9 (PCM)	-1	2	12	-68	2	11	-68	14	-65	-62	13	-65	-62	-62	-62
	Z 5	Z1	Z2	Z3	Z4	Z1,Z2	Z1,Z3	Z1,Z4	Z2,Z3	Z2,Z4	Z3,Z4	Z1,Z2,Z3	Z1,Z2,Z4	Z1,Z3,Z4	Z2,Z3,Z4	Z1 Z2,Z3,Z4
	-669.4 (PCM)	0	-2	7	14	-2	6	14	10	12	22	10	11	21	26	26

Doppler effect mutual inter dependence

- The Doppler effect (+1000K) is generally negative.
- Mutual inter dependence is much weaker (smaller flux shape changes).

Doppler effect	Impact of other zones on the main zone effect in %									
Main Zone	2 zon	es (e.g. Z	1+Z2)		4 zones					
Z1	Z2	Z3	Z4	Z2,Z3	Z2,Z4	Z3,Z4	Z2,Z3,Z4			
-55.3 (PCM)	-16	4	10	0	1	3	0			
Z2	Z1	Z3	Z4	Z1,Z3	Z1,Z4	Z3,Z4	Z1,Z3,Z4			
-75.9 (PCM)	-12	-7	-1	-10	-8	-8	-10			
Z3	Z1	Z2	Z4	Z1,Z2	Z1,Z4	Z2,Z4	Z1,Z2,Z4			
-91.7 (PCM)	2	-6	2	4	-2	-4	-4			
Z4	Z1	Z2	Z3	Z1,Z2	Z1,Z3	Z2,Z3	Z1,Z2,Z3			
57.3 (P€M)	10	-2	3	14	3	1	2			

Fuel density effect mutual inter dependence

- Fuel density effect (10% density reduction) is generally negative in fissile zone.
- Fuel density effect has medium mutual inter dependence, which is driven by flux shape.

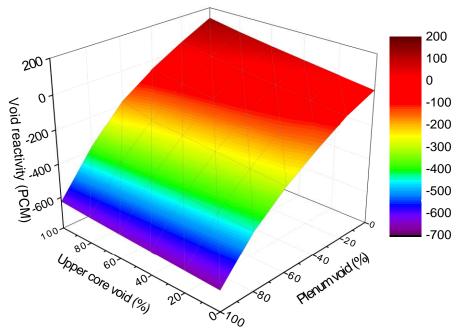
Fuel density effect	Impact of other zones on the main zone effect in %								
Main Zone	2 zon	es (e.g. Z	1+Z2)		4 zones				
Z 1	Z2	Z3	Z4	Z2,Z3	Z2,Z4	Z3,Z4	Z2,Z3,Z4		
6.9 (PCM)	-3	5	6	2	0	5	5		
Z2	Z1	Z3	Z4	Z1,Z3	Z1,Z4	Z3,Z4	Z1,Z3,Z4		
-418.2 (PCM)	0	-9	-4	-9	-4	-17	-17		
Z 3	Z1	Z2	Z4	Z1,Z2	Z1,Z4	Z2,Z4	Z1,Z2,Z4		
-509.0 (PCM)	0	-8	-7	-8	-7	-18	-18		
Z4	Z1	Z2	Z3	Z1,Z2	Z1,Z3	Z2,Z3	Z1,Z2,Z3		
-354.8 (PCM)	0	-5	-10	-5	-10	-20	-20		

Cladding density effect mutual inter dependence

- Cladding density effect (10% density reduction) is generally positive.
- It has mild mutual inter dependence, which is driven by flux shape.

Cladding density effect	Impact of other zones on the main zone effect in %									
Main Zone	2 zon	es (e.g. Z	1+Z2)		4 zones					
Z1	Z2	Z3	Z4	Z2,Z3	Z2,Z4	Z3,Z4	Z2,Z3,Z4			
11.2 (PCM)	6	8	4	12	7	1	8			
Z2	Z1	Z3	Z4	Z1,Z3	Z1,Z4	Z3,Z4	Z1,Z3,Z4			
107.5 (PCM)	1	2	0	3	1	3	4			
Z 3	Z1	Z2	Z4	Z1,Z2	Z1,Z4	Z2,Z4	Z1,Z2,Z4			
176.8 (PCM)	0	1	1	2	1	3	3			
Z4	Z1	Z2	Z3	Z1,Z2	Z1,Z3	Z2,Z3	Z1,Z2,Z3			
63.9 (PCM)	1	1	4	1	3	5	5			

Additivity of the effect in active core


• Sodium void effect, Fuel temperature, Fuel density, and Cladding density are all reasonable additive in the active core

Additivity in the core	Z1234	Z1+Z234	Z2+Z134	Z3+Z124	Z4+Z123	Z12+Z34	Z13+Z24	Z14+Z23	Z1+2+3+4
Sodium void effect	923.2	924.6	895.9	884.7	904.7	898.0	883.2	904.5	881.9
Difference in %	reference	0.2	-3.0	-4.2	-2.0	-2.7	-4.3	-2.0	-4.5
Fuel temperature effect	-275.9	-275.7	-283.7	-279.6	-274.9	-273.4	-281.1	-280.4	-280.3
Difference in %	reference	-0.1	2.9	1.3	-0.3	-0.9	1.9	1.7	1.6
Fuel density effect	-1166.0	-1166.4	-1237.6	-1256.6	-1236.7	-1238.1	-1256.3	-1236.4	-1275.1
Difference in %	reference	0.0	6.1	7.8	6.1	6.2	7.7	6.0	9.4
Cladding density effect	366.1	365.1	362.0	360.5	363.2	362.5	360.6	362.2	359.3
Difference in %	reference	-0.3	-1.1	-1.5	-0.8	-1.0	-1.5	-1.1	-1.9

Void in upper part

- Sodium void effect is not really additive for upper fuel Z4 and sodium plenum Z5 zones.
- Sodium plenum void increases neutron leakage and is not linear =>
- However summation of two effects in Z4 and Z5 is more conservative than bilinear interpolation between 4 points. (only because of compensating effects)

Additivity with plenum	Z2345	Z2+Z345	Z3+Z245	Z4+Z235	Z5+Z234	Z23+Z45	Z24+Z35	Z25+Z34	Z2+3+4+5
Sodium void effect	73.5	76.1	130.5	159.3	247.8	135.1	164.6	235.8	205.123
Difference in %	reference	3.5	77.5	116.7	237.1	83.8	123.9	220.7	179.0

- Coupled neutronics & TH simulation are important for conceptual studies as well as for safety assessment.
- Accuracy of the simulation tool should be selected according to the importance of the results.
- Standard solution uses multi-group XS as the coupling between TH & neutronics solver. (the solver uses prepared XS to calculate flux shape)
- Transients without sodium boiling, can be well addressed by TH & point kinetics.
- In transients with sodium boiling, which are CPU demanding from TH perspective, point kinetics is less precise and the related CPU savings are less important.

Wir schaffen Wissen – heute für morgen

