ESFR-SMART Spring School March 29-31 2021

MOX fuel safety and performances

D. Staicu

European Commission – Joint Research Centre (JRC)/

dragos.staicu@ec.europa.eu

Motivations for using MOX fuel

- Oxide fuels have higher melting points and lower thermal expansion than metallic fuels, carbides and nitrides, but have a lower thermal conductivity
- MOX fuel demonstrated a good behaviour up to very high burn-ups (15 at.%), during the fuel cycle, drawbacks are a high fission gas release, low density of fissile atoms and the compatibility with sodium.
- Metallic fuels, carbide or nitrides have a higher conductivity (lower irradiation temperature), but higher **swelling** and still large FGR.

Temperature gradient in a fuel pellet, FBR vs. LWR

- The target burn-up for FBR MOX fuels is about 15 at. %, which is considerably higher than
 for LWR fuels and will result in the formation of a large amount of fission products:
- forming a solid solution with the matrix (Y, La, Ce, Pr, Nd, Pm, Sm, Eu)
- oxide precipitates (Ba, Zr, Sr, Cs), appear as "grey phases"
- metallic precipitates (Mo, Ru, Tc, Rh, Pd),
- volatile (Cs, Te, I) which migrate to the pellet periphery
- gaseous (Xe, Kr).

Irradiation behavior different from LWR due to the high temperatures.

- Fuel restructuring
- Redistribution of Pu, Oxygen
- Fission gas release
- The JOG
- Impact of redistribution on properties

The initial microstructure (grains size, porosity) is strongly modified during irradiation as a result of restructuring.

Restructuring

- **FBR, T** >2000° C : extensive restructuring

4 regions:

Grains: as fabricated/RIM \rightarrow equiaxed \rightarrow columnar \rightarrow central hole T<1200° C dense transport of the as fabricated porosity

Pellet cracking, Grain growth, Columnar grains and central hole (initial or forms within minutes)

-LWR, T $< 1200^{\circ}$ C:

RIM **structure** (**HBS**, grains subdivision) at high burn-up at pellet periphery and in the Pu rich-agglomerates of heterogeneous MOX

Restructuring

- Central hole limits the maximum temperature reached and avoids melting at beginning of life
- Central temperature decreases after to gap closure

Lenticular pores form under steep temperature gradients in fast reactor (U,Pu)O₂ fuel

Pores and cracks move towards central void via evaporation/condensation mechanism

Restructuring

Vaporisation condensation (pore diffusion)

Redistribution

Redistribution of:

- plutonium : enrichment in the central area
- oxygen: migrates towards the low temperature region of the pellet
- minor actinides (if MA recycling): Am migrates to the center
- fission products (→ JOG)

Possible mechanisms:

- Atomic diffusion (thermal and athermal): bulk diffusion
- Grain boundary and surface diffusion
- Vaporisation condensation (pore diffusion)

Redistribution of Pu

Pu redistribution in FBR fuel after a burnup of 5% at 660 W/cm:

enrichment in the center

Ref.: Olander

Redistribution of Oxygen

Fresh fuel is fabricated hypostoichiometric.

During irradiation, oxygen is rapidly redistributed radially

Fission Gas release

- High fission gas release (FGR) already at low burn-up: fuel pin must have sufficient free volume
- Large grains are favourable to fission gas retention, but the diffusion coefficients are very high (high T)
- Fission gas is mainly located at the pellet periphery, almost no gas remains close to center
- In typical PWR fuel, FGR is below 2% at the burn-up of 50 GWd/t

The Joint Oxyde-Gaine, JOG:

- For burn-ups above about 5 to 7 at.%, some fission products are released and compounds accumulate as a solid medium in the gap.
- Forms in the hotter regions of the fuel pin, thickness increasing with burn-up up to 150 to 300 µm

The JOG

- Evolution of the gap:
- 1 below about 5 at.%, gaseous and decreasing
- 2 about 5 to 10 at.%: increasing rapidly, it is filled with JOG
- 3 above 10 at.%: slower increase
- JOG contains neither U nor Pu. It is an oxde phase mainly with Mo and Cs, but Ba, Pa, Cd, I, Te are also present. Mo has left the noble metal precipitates.
- Pellet–cladding mechanical interaction (PCMI) does not take place during the first years of irradiation, and then remains moderated, even less with annular pellets

The JOG

No JOG in the lower part of the fissile column, where T is lower

- The exact composition of the JOG is not known, it varies axially and azimutally in the pin, depending on local temperatures, oxygen potential...
 - > fuel properties like conductivity are expected to vary accordingly!
- The thermal conductivity of the JOG (Cs₂MoO₄, ...) is 5 to 10 times lower compared to the fuel matrix

JOG formation induces a decrease of the matrix swelling.

Impact of redistribution of properties

 Pu, O redistribution have an impact on the fuel properties: melting point, thermal conductivity which will depend on radial position.

Locally, conductivity depends on:

- Temperature
- Burn-up
- FP content
- O/M
- Pu content
- Microstructure

⇒ Modelling is required, more challanging that in LWR

Thermal diffusivity

Local measurement of the

thermal diffusivity

A heat pulse is produced by the laser on the front face

Contributions to the thermal conductivity decrease in irradiated (U,Pu)O₂

Stoichiometric irradiated LWR and FBR MOX fuels: annealing effects are known in LWR MOX: conductivity at 500K is much higher if the fuel was irradiated at higher T

Degradation of the thermal conductivity during irradiation

- Measured high thermal conductivity values can not be explained by LWR fuel formulas by suppressing the contribution of radiation damage and fission gas.
- Agreement if FP effect reduced by 75%

- The FP movement out of the fuel pellet and the presence of the JOG are proposed as main parameters

- Oxide fuel shows extensive restructuring due to the high operating temperatures and the steep temperature gradient
- FR oxide fuel has a high fission gas release as a result of which the radiation induced swelling is limited
- Radial and axial redistribution of volatile fission products takes place
- A broad knowledge base for the properties of (U,Pu)O₂ is available but still uncertainties exist, e.g. melting temperature and thermal conductivity

Thank you!

