

Transition flows

Conclusion

## Sodium boiling: phenomena, models and tests Transitional convection flows

Antoine Gerschenfeld

CEA (DM2S/STMF)

March 30, 2021

## Motivation

A. Gerschenfeld

Sodium boiling
Transition flows
Conclusion

### Sodium boiling

- an unavoidable consequence of ULOF transients in oxide core SFRs (except in RAPSODIE and FFTF)
- in traditional core designs (like PHENIX, SUPERPHENIX, EFR...): power excursion → severe accident (next talk!)
- in designs with above-core sodium plena (ASTRID, BN-1200) negative reactivity feedback → stable state, or maybe oscillations?
- ⇒ to predict it: models, codes and validation

#### Transition flows

- during all LOF transients: transition to natural convection
- in sodium, heat transfer remains good at low velocities, but:
  - heat transfer models are needed in system codes → Nusselt number
  - and turbulence models are needed in CFD codes!



Sodium boiling

Phenomena Momentum Heat transfer Instabilities Modelling Validation Transition flows



## Sodium boiling / Phenomena

#### Momentum transfers

Physical properties of Na liquid/vapor in reactor conditions:

- $T_{sat} \sim 900^{\circ}\text{C}$ : high margin from normal operation but not far from clad degradation (1400°) once it starts!
- $\rho_I = 740 \text{kg/m}^3$ ,  $\rho_g = 0.28 \text{ kg/m}^3 \rightarrow \rho_I/\rho_g \sim 2600$  $\rightarrow \text{similar}$  (even worse) than water at 1 atm :
  - high void fraction → annular flow
  - very high velocity differences :  $v_l \sim 1 \text{ m/s}, v_g > 10 \text{ m/s common}$
  - droplet entrainment by gas
- viscosity:  $\nu_{Na} \sim 0.7 \nu_{H_2O}$
- surface tension:  $\gamma_{Na} \sim 0.2 \gamma_{H_2O}$
- ⇒ air/water or water/steam experiments at 1 atm relevant for some phenomena!



Sodium boiling

Phenomena Momentum Heat transfer Instabilities Modelling

Transition flows

# - Dryout Annular Flow Evaporation Nucleat

(b) High-Quality Flow

## Sodium boiling / Phenomena

#### Heat transfers

- thermal conductivity :  $k_I = 48 \text{ W/m.K}$ ,  $k_g = 0.045 \text{ W/m.K}$ 
  - in liquid:  $T_{wall} T_{bulk} \sim 5^{\circ}$ 
    - $\rightarrow$  very fast vapor production once  $T_{wall} > T_{sat}$
    - → critical heat flux and DNB not an issue
  - instead, all the liquid boils... until dryout:
    - no heat removal by vapor  $\rightarrow$  adiabatic heating (>200 $^{\circ}$ /s)
    - $\blacksquare$  rewetting within 1-2s  $\rightarrow$  reversible
    - otherwise → cladding degradation or experimental damage!



⇒ no shortcuts for these phenomena: sodium tests are needed!



A AP

Na Boiling Transition flows A. Gerschenfeld

Sodium boiling
Phenomena
Momentum
Heat transfer
Instabilities
Modelling

Transition flows

## characteristic Pressure head delivered by the pump working point Istable Excursion Mass flow rate Boiling All liquid Inlet Mass flow rate Flow redistribution chuaging Phoiling onset

2

## Sodium boiling / Phenomena

#### Instabilities

Internal

Because of the high  $\rho_I/\rho_g$ :

- lacktriangle vapor formation o higher velocity o more friction
  - $\rightarrow$  lower flowrate  $\rightarrow$  more vapor...
  - ⇒ Ledinegg instability
- if flow is reduced slowly: quasi-static phenomenon → flow redistribution
- during a faster transient (e.g. loss of flow)
  - → dynamic instabilities instead:
    - chugging: vapor growth → no heat transfer → bubble collapse → rewetting
    - or some less extreme oscillations
      - → like BWR density-wave oscillations

In a real reactor, these would be coupled to neutronics!



Sodium boiling
Phenomena
Modelling
Physics
Scales

Transition flows



## Sodium boiling / Modelling

### Two-phase equations

- strong velocity differences → two-fluid (Euler-Euler / 6 equations)
- but close to thermal equilibrium → almost 5 equations?
- possibility of entrainment → 3-field approach?

#### Physical models

- momentum exchanges (two-phase multiplier, interfacial friction) water similarity → use models from air/water experiments
- heat/mass transfers → no similarity, but no separate measurements! in general: start from single-phase Na + general models
- ⇒ then verify/adjust these models on sodium tests (but somewhat hard to separate them)



Na Boiling Transition flows

A. Gerschenfeld

Sodium boiling
Phenomena
Modelling
Physics
Scales

Transition flows

Conclusion

## Sodium boiling / Modelling

#### TEMPERATURE

5.895e+02 5.361e+02 4.826e+02 4.291e+02





 $\rightarrow$  in ESFR-SMART: CATHARE (CEA), SAS-SFR (KIT)

■ 2D per ring → to capture center/periphery differences up to 50°C in normal operation!

 $\rightarrow$  but stronger in experiments (7/19/37 pins) than in reactor (200+ pins)

in E-S:TRACE (PSI), NATOF-2D (JRC), CESAR (IRSN)

■ full subchannel → corner channels, better mixing models in E-S: TrioMC (CEA, not ready yet)

■ two-phase CFD → better modelling, esp. above bundle in E-S: Neptune\_CFD (EDF, two-phase difficulties)

⇒ overall: huge numerical challenge!





Sodium boiling Phenomena Modelling Validation History

Transition flows



## Sodium boiling / Validation

### History

Many experiments in Europe, US and Japan in the '60s-'90s → many shared in the Liquid Metal Boiling Working Group

- steady-states in forced convection
  → can (somewhat) isolate momentum models
  the best: ISPRA (JRC, 12 pins)
- fast transients (LOF or blockage): the best: KNS-37 (KfK/KIT, 37 pins)
- slow transients → flow redistribution: the best: GR19 (CEA), SIENA-37F (JAEA)
- two-phase natural convection: GR37 (CEA), KNS-37, SONACO (UKAEA)
- tests with 2 subassemblies: THORS-SHRS (ORNL), AR-1 (IPPE)
- in-pile tests in BR2, CABRI (SCARABEE)



Sodium boiling Phenomena Modelling Validation History

Transition flows



## Sodium boiling / Validation

#### **Validation**

#### General approach:

- steady-states less sensitive to heat transfers
  - → validate momentum transfer models
- then combined validation on representative tests
  → for instance LOF transients

#### Common difficulties:

- limited measurements (esp.: no average void fraction)
- data recovery issues
- differences with modern concepts:
  - small pins
  - no above-core sodium plenum



[°c]

signals

Pressure [bar]

Mass flow rate

[mm]

[kg/s]

o Vennus level

w Liquid level

V = Vapour

Sodium boiling Modelline

ESER-SMART Transition flows

Conclusion

## Sodium boiling / Validation

#### FSFR-SMART: KNS-37 benchmark

a 7-way benchmark on two KNS-37 tests:

- L22: fast LOF  $(t_{1/2} = 2.35s)$  at constant power
- **L**29: a bit slower  $(t_{1/2} = 3.5s)$

#### experimental data:

- thermocouples (around 200!)
- static pressures (4-5)
- local void sensors

#### 7 participants:

- 1D: CEA, ENEA (CATHARE), KIT (SAS-SFR)
- 2D: PSI (TRACE), IRSN (CESAR), JRC (NATOF)
- CFD: EDF (Neptune\_CFD)





Sodium boiling Modelling ESER-SMART



## Sodium boiling / Validation





## FSFR-SMART: KNS-37 benchmark

Main events for L22 (fast):

- t = 0s: transient start
- t = 6s: first vapor detected  $\rightarrow$  local boiling: well-predicted by 2D codes, but not seen in 1D
- t = 8s: generalized boiling  $\rightarrow$  seen in all codes
- t = 9s flow redistribution  $\rightarrow$  seen in all codes (+/- well captured)
- t = 10s: dryout + heater cut-off
- t > 10s: recondensation  $\rightarrow$  not easy to predict!
- ⇒ several potential improvements identified



Na Boiling Transition flows

A. Gerschenfeld

Sodium boiling Phenomena Modelling Validation History

ESFR-SMART

Transition flows

Conclusion

## eveline feat with vibrative absorbers (same on bottom Segling Acrylic Glass тсз Water Refil Line









## Sodium boiling / Validation ESFR-SMART / CHUG

- during dynamics oscillations:
   recondensation + pressure peaks
   → not much data, even in water at 1 atm!
- new experiment at PSI/EPFL/ETHZ:
   CHUG: steam injection in water @ 20°
- instrumentation:
  - bubble size → high-speed camera
  - void fraction: X-ray radiography
  - $lue{}$  pressure peaks ightarrow static pressure sensors
- early validation: TRACE





Na Boiling Transition flows

A. Gerschenfeld

Sodium boiling
Phenomena
Modelling
Validation
History
ESFR-SMART

Transition flows

. . . . .



## Sodium boiling / Validation ESFR-SMART / KARIFA

- Analytical test under development at KIT: vapor generation at laser-heated wall
- ⇒ better measurement of bubble formation and condensation
- pre-test CFD calculations:





Sodium boiling

Transition flows

Conclusion



#### Transition flows

### ESFR-SMART / KASOLA $\rightarrow$ cf. tomorrow!

- RANS turbulence models for sodium flows:
  - lacktriangle momentum o water similarity: usual models OK
  - heat transfer → Pr ≪ 1, large boundary layers
     → new models needed!
     especially at low velocity → transition flows
- new models require fine instrumentation ("CFD-grade") → difficult in sodium!
- new loop at KIT (same building as KNS-37): KASOLA → BFS test section:
  - backward facing step geometry (well-known flow)
  - all heating → boundary layer
  - moving probes → detailed temperature fields
- complementary to Hi2Lo approach
   (DNS/LES used as numerical experiment for RANS)



Transition flows

A. Gerschenfeld

Sodium boiling

Transition flows

#### Conclusion

- despite its rich history, sodium boiling is probably the least mature field of SFR thermal-hydraulics!
  - $\rightarrow$  and it is critical for low-void cores...
- main needs on the code side:
  - more robust solvers, especially for subchannel and CFD!
  - phenomena: condensation, droplet entrainment
- main needs on experimental side:
  - experiments for new designs (→ sodium plena)
  - $\blacksquare$  improved instrumentation to separate effects  $\rightarrow$  esp. average void fraction
- at the reactor scale, multi-physics effects come into play:
  - neutronics : local effects on top of global power fluctuations
  - fuel: gap conductance variation  $\rightarrow$  fuel temperature  $\rightarrow$  Doppler feedback
  - ⇒ in practice, these effects are often stronger than T-H details!