Flow measurements in liquid metals

Sven Eckert

Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

Many thanks to:

Thomas Wondrak, Matthias Ratajczak, Nico Krauter, Klaus Timmel, Sven Franke, Thomas Gundrum, Frank Stefani, Phillip Büttner, Thomas Richter, Natalia Shevchenko ...

Measurement quantities

Quantity	Sensor	
Pressure	Fiber optical sensors	
Flow rate	Inductive flow meter	
Local velocity	Mechanical devices Potential probe (turbulent spectra)	
Flow field (1D/2D/3D)	Ultrasound Doppler Velocimetry Contactless Inductive Flow Tomography	
Multi-phase flows	Resistance probes Fibre optical sensors Ultrasound Transit Time Technique X-ray / neutron radioscopy Mutual Inductance Tomography	
Free surface level	Ultrasound methods Optical methods Inductive methods	

non-invasive but contact needed

contactless

Resistive probes for local gas detection

- Insolated rod with small electrical contact at the sensor tip
- Sensor inserted into the melt
- Current flows through the liquid to the sensor top
- Gas bubbles are insulator
- Sensor signal: on/off (contact time of bubble)
- Sensors with two tips: bubble velocity
- Sensor design challenges:
 - electrical insulation
 - length of the tip
 - corrosion of the tip
 - mechanical stability

sensor design with mounting

Resistive probes: validation by X-ray visualization

- Vessel cross section:140 mm x 12 mm
- Liquid metal: GalnSn
- 3 sensors inserted at the top
- Spacing 10 mm
- Argon gas injection at the bottom
- 1 10 kHz data sampling
- Synchronization with the camera
- Results:
 - negligible effect on the flow
 - bubble not centered

2.95

3.00

t in s

3.05

sensor 1

200

600

sensor 3

sensors

1400

sensor 2

Potential Probe

- Two electrodes with distance L in contact with the fluid
- Magnetic field B generated by a small magnet incorporated into the probe or externally applied
- Ohm's law for moving conductors

$$\mathbf{j} = \sigma(\mathbf{v} \times \mathbf{B} - \nabla \varphi)$$

Measured voltage:

$$\Delta \varphi = c_w \cdot L \cdot |\mathbf{B}| \cdot v$$

- Calibration factor: c_w
- Small response time 500 Hz: turbulent fluctuations
- Challenges:
 - Invasive
 - Prone to electrical interfering signals: nV (!)

Ultrasound Doppler Velocimetry (UDV)

- Transmission of multitude of ultrasonic bursts
- Burst reflected at scattering particles

$$x = \frac{ct}{2}$$

c sound velocity

 Phase-shift between successive particle echoes referred to pulse repetition time:

$$v_{x} = \frac{c \cdot \Delta \varphi}{4\pi \cdot f_{0} \cdot T_{prf}}$$

- Instantaneous velocity profile
 - 1 mm/s ... 10 m/s
 - 20 30 Hz
- Can operate through wall

Doppler angle θ : $v = v_x \cos \theta$

Y. Takeda, Ultrasonic Doppler velocimetry profile for fluid flow (2012) Springer

Ultrasound sensor array

	state of the art	new array
Imaging dimensions	2D-1C	≥ 2D-2C
Measuring lines	≤ 21	≥ 48
Meas. line sampling	sequential	parallel
Measurement rate	5 fps	\geq 30 fps
Measuring line pitch	≥ 8 mm	< 3 mm

- Up to 4 linear transducer arrays
- Measuring plane: 67× 67 mm²
- Measurement grid:24 × 24 vectors
- Grid pitch: 2.7 mm
- Spatial resolution: ≈ 3 m

UDV: High temperature probes

- Temperature < 230°C
- Housing
 - protection from chemical corrosion
 - simple probe exchange during operation
 - removable for renewal of wetting
 - spring compensate thermal expansion
 - special treatment of housing tip to ensure wetting
- Measurement in a SnBi melt at 200 °C

UDV: Wave guide sensor

- Temperature < 700 °C
- Temperature gradient along wave guide
- Wave guide made of stainless steel foil (0.1 mm) axially wrapped
- Special treatment of the wave guide tip to ensure good wetting
- Prevent unwanted propagation modes

corrosion

UDV: Example at LIMMCAST

Ultrasound transit time technique (UTTT)

- Measurement procedure for one sensor:
 - Send ultrasound impulse into the melt
 - 2. Listen to the echo
- Reflection at the outer surface of the bubble
- Measure time of flight of the impulse: t_b
- Distance between sensor and outer surface x_b:

$$x_b = \frac{ct_b}{2}$$

c sound velocity

- Information:
 - Spatial distribution of bubbles
 - Velocity of bubbles
 - Bubble diameter

T. Richter et al., Nucl. Eng. Des. 291 (2015)

UTTT: Example in GalnSn path of single bubbles

- Flat vessel: 144 mm \times 12 mm with h = 144 mm
- Static magnetic field perpendicular to the wide face of the container 0 – 300 mT
- Comparison with X-ray radiography
- Measurement at 5 vertical positions

Bubble diameter

0 mT: d = 4.8 mm300 mT: d = 5.2 mm

Inductive bubble detection

Mutual inductance tomography (MIT)

- Developed at the University of Manchester
- Measurement of the conductivity distribution in one cross section
- 8 sensing coils
- Temporal resolution about 20 40 frames per second
- Nonlinear inverse problem

- N. Terzija et al., Flow Meas. Instrum. 22 (2011)
- T. Wondrak et al., MMTB 42 (2011)

Two phase flows in pipes

- Argon gas / liquid steel distribution:
 - Shape of the jet
 - Bubbles inside the jet
- Difficult to reconstruct **both** properties at the same time using only MIT
- In collaboration with University of Bath:
 - Capacitance tomography: shape
 - MIT: bubbles
- Feasibility study for the application of capacitance tomography for liquid metals

T. Wondrak et al., Meas. Sci. Technol. 28 (2017)

Exposing the flow v to an externally applied magnetic field B

- Exposing the flow v to an externally applied magnetic field B
- 2. Induced current:

$$\mathbf{j} = \sigma(\mathbf{v} \times \mathbf{B} - \nabla \varphi)$$

- Exposing the flow v to an externally applied magnetic field B
- 2. Induced current:

$$\mathbf{j} = \sigma(\mathbf{v} \times \mathbf{B} - \nabla \varphi)$$

3. Flow Induced magnetic field

$$\mathbf{b}(\mathbf{r}) = \frac{\mu_0 \sigma}{4\pi} \iiint\limits_{V} \frac{(\mathbf{v}(\mathbf{r}') \times \mathbf{B}(\mathbf{r}') - \nabla \varphi(\mathbf{r}')) \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} dV'$$

- Exposing the flow v to an externally applied magnetic field B
- 2. Induced current:

$$\mathbf{j} = \sigma(\mathbf{v} \times \mathbf{B} - \nabla \varphi)$$

3. Flow Induced magnetic field

$$\mathbf{b}(\mathbf{r}) = \frac{\mu_0 \sigma}{4\pi} \iiint\limits_{V} \frac{(\mathbf{v}(\mathbf{r}') \times \mathbf{B}(\mathbf{r}') - \nabla \varphi(\mathbf{r}')) \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} dV'$$

4. Measurement of the magnetic field outside the melt

- Exposing the flow v to an externally applied magnetic field B
- 2. Induced current:

$$\mathbf{j} = \sigma(\mathbf{v} \times \mathbf{B} - \nabla \varphi)$$

3. Flow Induced magnetic field

$$\mathbf{b}(\mathbf{r}) = \frac{\mu_0 \sigma}{4\pi} \iiint\limits_{V} \frac{(\mathbf{v}(\mathbf{r}') \times \mathbf{B}(\mathbf{r}') - \nabla \varphi(\mathbf{r}')) \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3} dV'$$

- 4. Measurement of the magnetic field outside the melt
- 5. Reconstruction of the velocity field from the measured induced magnetic fields (linear inverse problem)

 M. Rataiczak et al. Philos. Trans. R.

CIFT with electromagnetic brake

Example LIMMCAST

Tomographic sensors for control

 European Training Network: Smart tomographic sensors for advanced industrial process control (TOMOCON)

Tomographic measurement

CIFT: flow in the mould

MIT/ECT: two-phase flow in SEN

Actuators

- Gas injection
- Strength of the EMBr

Control objectives

- Double roll preferred
- No asymmetric flow
- Constant position of the jet
- Constant filling degree of the SFN
- Constant velocity at the meniscus

Proposal of the application of CIFT to ESCAPE

CIFT for ESCAPE: Forward problem

- Two applied magnetic fields (1 mT)
- Frequency 0.5 Hz
- Flow induced magnetic field: 1 μT

Transient eddy current flow meter (TEC-FM)

- Pulsed external magnetic field generates a transient eddy current
- Continuous tracking of a flow-advected transient eddy

Immersed sensor (ITEC-FM)

- Immersed TEC-FM for the purpose of local blockage detection
- 2 excitation coils
- 2 detection coils

N. Krauter et al., Meas. Sci. Technol. 28 (2017)

Immersed level sensor

- preliminary measurement witch velocity sensor in GaInSn
- linear dependency of U(h) between 2,7 cm and 4,5 cm

Level measurement for titanium production (Kroll process)

 Exothermal reaction on the free surface of liquid Mg

$$TiCl_4 + 2Mg \rightarrow Ti + 2MgCl_2$$

- Temperature of 850 °C
- Titanium sponge deposits on the bottom and walls of the reduction reactor
- Titanium sponge interferes with the inductive level measurement because it has a similar electrical conductivity to liquid magnesium
- Heating coils are excitation coils
- One large coil at the top of the reactor
- Non linear inverse problem: database containing the induced voltage for a huge range of parameter combinations

N. Krauter et al., MMTB 49 (2018)

X-ray radiography

- Attenuation of the X-ray depends on the density ρ of the material
- Visualization of bubbles
 - bubble size and shape
 - bubble trajectory
- Visualization of solidification
- High density of liquid metals:

GalnSn: < 15 mm

thickness

N. Shevchenko et al.,
J. Cryst. Growth 417 (2015)

Liquid metal flotation

- Removal of inclusions
- Shear-driven coalescence of particles
- Particle capturing by rising gas bubbles

Cooperation with Technical University Dresden

+ French partners (Nancy and St. Etienne)

Background: Flow control during solidification

Melt flow: natural convection (thermal, solutal)
Forced convection (electromagnetic stirring)

Freckle formation triggered by mesoscopic convection

Freckle defect in a turbine blade

[A.F. Giamei (1997)]

Conclusions

- Flow measuring in liquid metal flows is still a challenging task
- Some progress has been achieved in recent years
- Velocity fields can be measured now with reasonable temporal and spatial distribution, however, technical solutions for a robust instrumentation under industrial conditions are still rare

Contact: s.eckert@hzdr.de

Many thanks for your attention!

