

Modeling and assessment of new safety measures for Generation-IV European Sodium Fast Reactor

Janos Bodi

janos.bodi@psi.ch

ESFR-SMART spring school, 29-31 March, Cambridge, Zoom presentation

- Focus and objectives of the study
- Research framework
- Reactor assessment under protected transient (PSBO)
 - DHRS description
 - DHRS results
- Reactor assessment under unprotected transient (ULOF)
 - -TRACE model
 - Results
- Summary

Focus and objectives of the study

- The main focus of the PhD project is safety assessment of the Generation-IV European Sodium Fast Reactor (ESFR) and the main objectives are:
 - Improve and validate selected modeling methodologies
 - –Assess the new safety measures proposed for ESFR
 - Demonstrate the ESFR safety with respect to transient response including designbasis and beyond-design-basis accidents

Research framework

ESFR reactor

- Pool-type Sodium Fast Reactor
- Low-void effect core
- 3 primary pumps
- 6 intermediate heat exchangers
- 3 different decay heat removal system
 - 2 passive system
 - 1 active system

Utilized codes:

- Autodesk Inventor, CAD software
- Serpent 2, neutronics Monte Carlo code
- PARCS, nodal diffusion code
- TRACE, thermal hydraulics system code
- Inventor Nastran, Finite Element solver

Protected station blackout (PSBO)-DHRS description

- 3 decay heat removal systems (DHRS) are envisaged in the design
- DHRS-1 and DHRS-2 are passive, whereas DHRS-3 is actively operating
- DHRS-1 and DHRS-2 activation at 600°C IHX inlet temperature

DHRS-3

Protected station blackout (PSBO)-DHRS results

- Fukushima like accidental condition to ensure the safe shutdown of the reactor under such conditions
- Initiator event is a loss of electrical power supply
- Control rod insertion is ensured (protected scenario)
- All pumps (primary, secondary and tertiary) are gradually stopped in the reactor
- DHRS systems are initiated at 600°C IHX inlet temperature

DHRS-1 performance assessment

Unprotected loss of flow (ULOF)-TRACE model

- 42 channel boiling model is used with TRACE (1/12th of the reactor)
- The current model is used with point kinetics
- The influence of the sodium plenum is analyzed
- Around 60s of boiling is simulated currently

Unprotected loss of flow (ULOF)-results

- Clad melting with the reference model but no power runaway
- A sensitivity study is being conducted on certain design parameters such as:
 - Assembly outlet geometry
 - The influence of gagging scheme
 - Sodium plenum effect

- The ESFR has been modeled with different simulation tools, such as TRACE, PARCS and Serpent 2
- The reactor behavior is being analyzed under protected (PSBO) and unprotected conditions (ULOF)
- Proposed new DHRS are evaluated under PSBO conditions
- Sensitivity of reactivity components and design parameters are being assessed
- Certain design modification proposals are made based on the simulation results

Thank you for your attention!