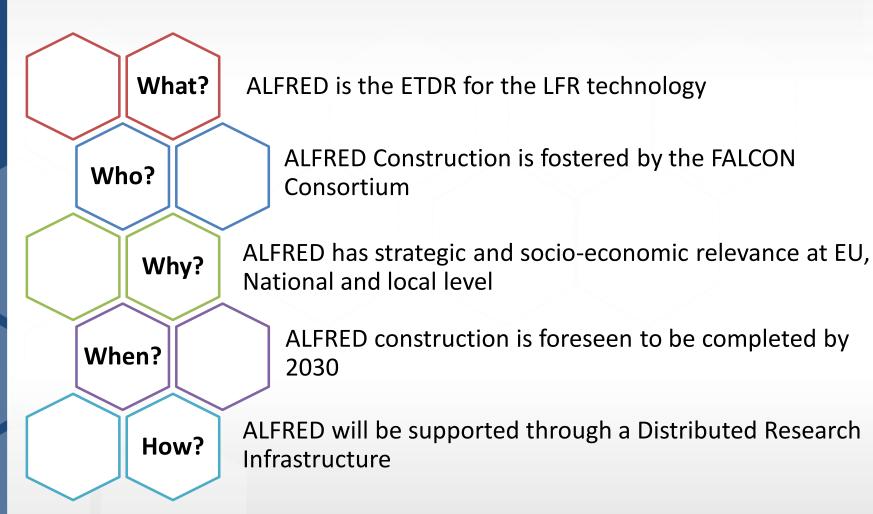
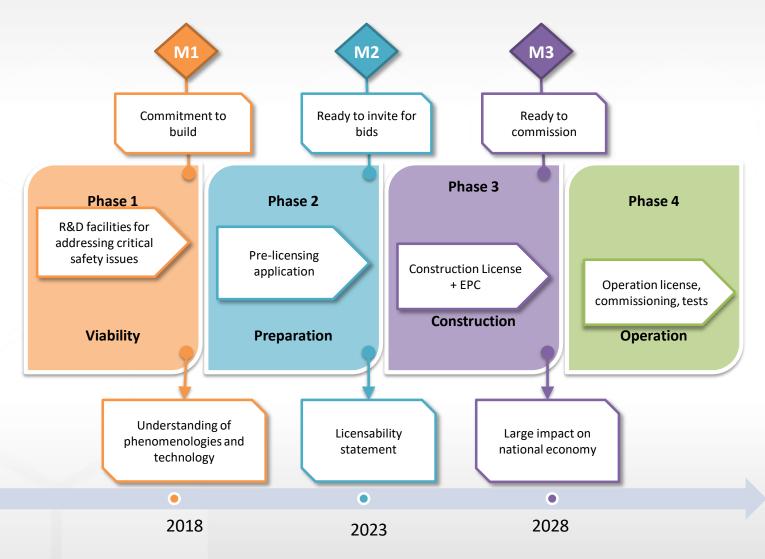
ALFRED and LFR projects

SPRING SCHOOL SODIUM COOLED FAST REACTOR

ESFR-SMART Spring School


March 29-31, 2021, online Webinar session 5: OTHER COOLANTS

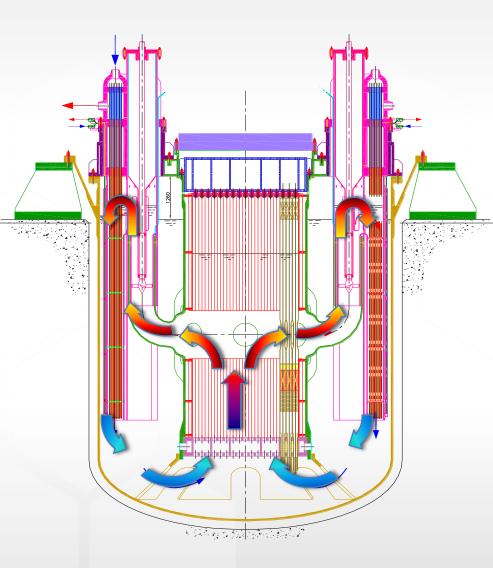
Via Nicola Lorenzi 8 16152 Genova – Italia www.ansaldoenergia.com Marco Caramello PhD (on behalf of Alessandro Alemberti) FSD – Fluid System Design


Ph: +39.010.655.82.36 marco.caramello@ann.ansaldoenergia.com

The ALFRED Project in a nutshell

Project Timeline to Commissioning

Recent advancements:

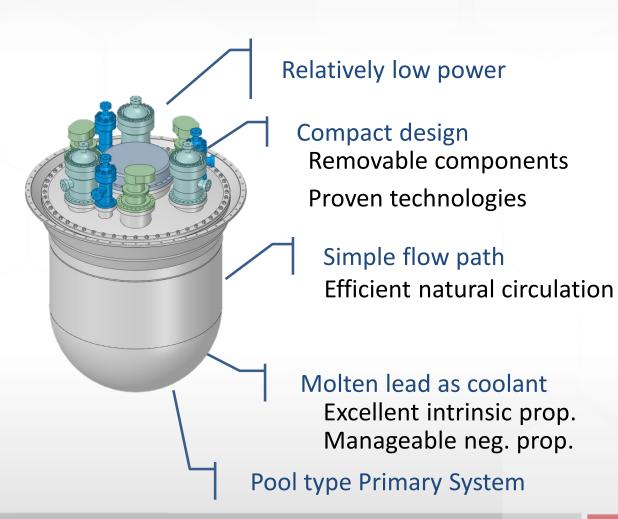

- Pro-ALFRED contract executed
- Research infrastructure identified
- First minor project accepted (20 M€)

FALCO

• Adoption of **staged approach**

ALFRED

ALFRED – LEADER CONCEPT

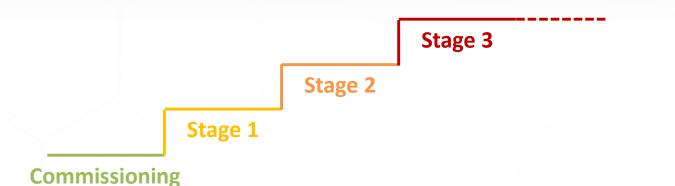


- **Reactor cover**: Hot, standard flanged connections
- Fuel assemblies: MOX fuel, grid-spaced, hexagonal, wrapped, extended stem
- **Reactivity control**: Two diverse and redundant systems, control and shut-down rods

- **Primary system configuration**: Pool-type, enhanced natural circulation in accident conditions
- Primary Pumps: Mechanical, pull-type, in hot leg
- Steam Generators: Once-through, bayonet tubes
- **DHR**: Isolation condenser connected to dip-coolers with straight, double-walled tubes
- **Reactor and Safety Vessels**: Hanged, toro-spherical bottom head

Strategy to address the challenges

- ALFRED revised design oriented to shortening the time-to-market and leveraging on SMR features.
- Main issues:
 - Lead is a corrosive and erosive environment
 - Corrosion is enhanced by temperature
 - Protective oxide layer becomes unstable at high temperature
 - Neutron irradiation is relevant
- But we want the technology to become competitive for a future commercial application, which means operating at high temperature.



• ...

Staged approach in a nutshell

The operation of ALFRED will be based on a stepwise approach:

- 1st stage: operation at low power in lowtemperature range
 - Existing proven materials working in O2 controlled lead environment
- nth stage: operation at full power in hightemperature range
 - Advanced materials or protective measures fully qualified during earlier stages

	1 st stage	Final stage
Power	100 MWth	300 MWth
Thermal cycle	390-430°C	400-520°C
Coolant chemistry	10-6÷10-8 O2	Same, but not
control	wt.%	effective
Materials	316L, 15-15Ti	Relying on coating or
		innovative materials

From LEADER to FALCON

M. Caramello - ALFRED and LFR projects – ESFR SMART Spring School – March 29-31, 2021

From LEADER to FALCON

- 8 Steam Generators
- 8 Primary Pumps

Simple shapes to avoid fabrication/mechanical qualification issues

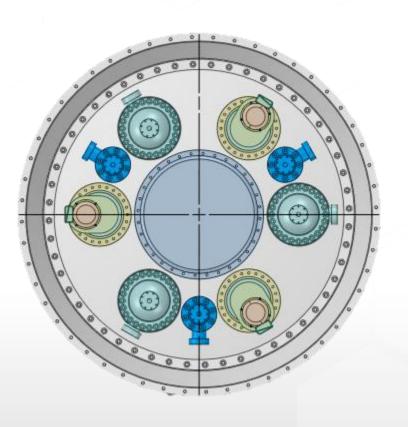
3 Primary Pumps 3 Dip Coolers

•

3 Steam Generators

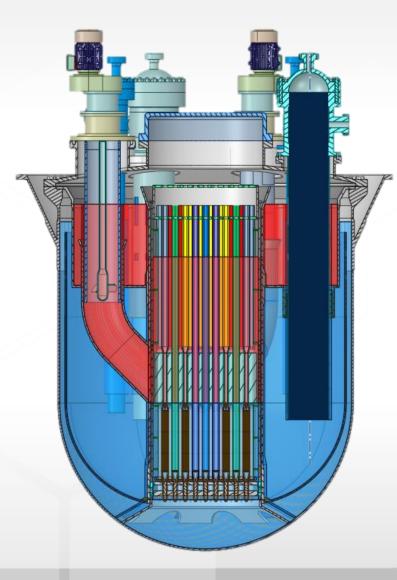
Space to include connections for auxiliary systems (e.g. Cover Gas Conditioning system under development by ENEA)

LEADER CONFIGURATION


REVISED CONFIGURATION

Design Description

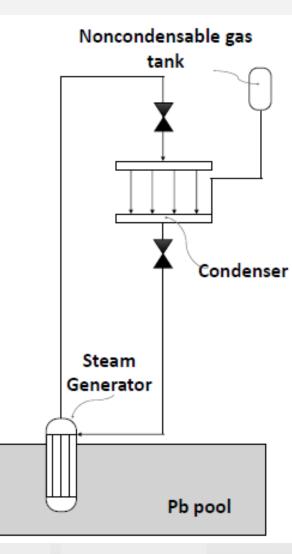
The Reactor Coolant System is liquid lead loop completely enclosed within the Reactor Vessel and Reactor Cover, composed by the following major components:


- 1 Inner Vessel
- 1 Internal Structure
- 3 Steam Generators
- 3 Primary Pumps
- 3 Dip Coolers (DHR-2)

These components hung inside the lead from the top, where are connected to the nozzles of the Reactor Cover.

FALCO

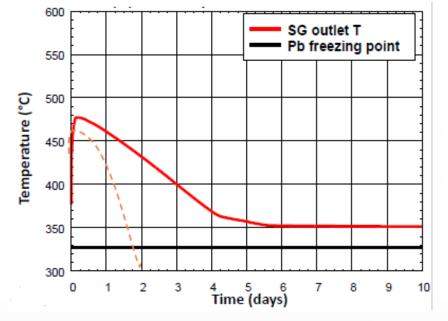
Design Description


ALFRED Enhancements:

- Introduced diverse DHR-2 system
- Increased grace time to freezing when DHR system are in operation

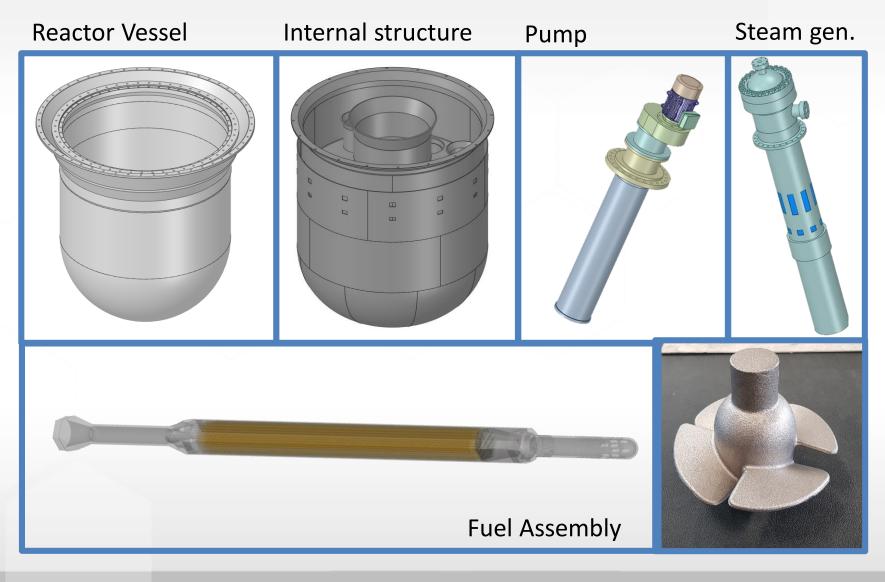
FALCO

- Eliminated Pool Thermal Stratification
- Eliminated direct connection SGs core
- Introduced Hot Safety Vessel (No Liner)
- Elimination of double wall SGs
- Ensured Refueling operations with FA under lead
- Staged approach to by-pass technological limits


ALFRED DHR

ALFRED has an innovative Decay Heat Removal system Patented by Ansaldo Nucleare, passively controls heat removal It is based on non-condensable gases

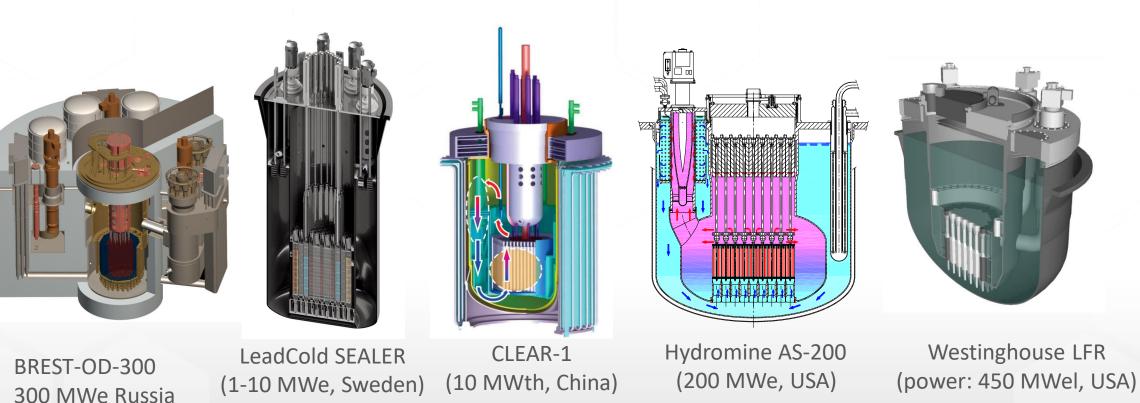
- In LFRs coolant freezes at 327°C Decay heat is:
- 10% of nominal power in few sec.
- 1% of nominal power after 1 hour.
- 0.1% after few days.


A 10% non cond. gas mass fraction reduces by 25% the HTC

FALI

Several numerical simulations have been performed \rightarrow proof of principle SIRIO facility first tests will provide experimental basis PIACE Project to extend the campaign \rightarrow proof in relevant environment

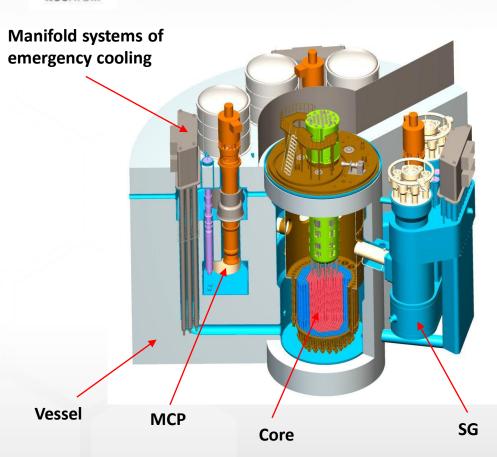
Reactor Coolant System – Main equipment



FALCO

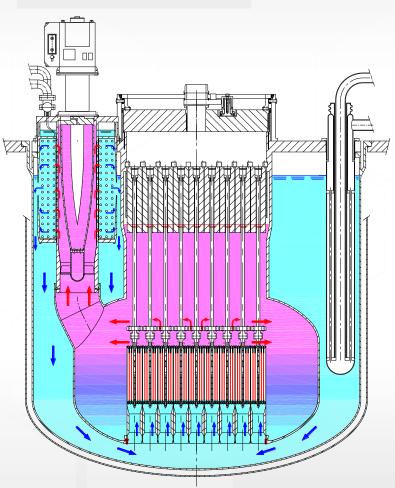
M. Caramello - ALFRED and LFR projects – ESFR SMART Spring School – March 29-31, 2021

Some examples of Current LFR and LFR/ADS initiatives



M. Caramello - ALFRED and LFR projects – ESFR SMART Spring School – March 29-31, 2021

BREST-OD-300 prototype for a commercial Reactor



Thermal power [MWth]	700
Electric power [MWe]	300
Primary coolant	lead
Number of loops	4
Average temperature of lead coolant at the entrance/exit of the core [°C]	420/535
Fuel material	U-Pu Nitride
Number of fuel assemblies	169
Fuel charge [t]	20.6
Power Conversion Efficiency [%]	43.5

FALCO

Hydromine AS-200

Hydromine

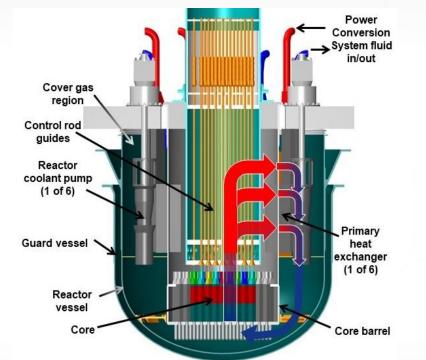
The Hydromine AS-200 concept is a highly compact 200 MWe LFR:

- Achieved by elimination of components
- ~ 4 times more compact than the Superphenix (SPX-1) SFR
- ~ 2-3 times more compact than than the best SFR projects
- ~ 3-5 times more compact than than previous LFR projects

Core power (MWth)	480
Electrical power (MWe)	200
Coolant	Lead
Core inlet/outlet T (°C)	420/530
Primary loop pressure loss (Bar)	1.3
Secondary cycle	Superheated steam
Turbine inlet pressure (Bar)	180

Westinghouse's Lead Fast Reactor

Aim for economic competitiveness,

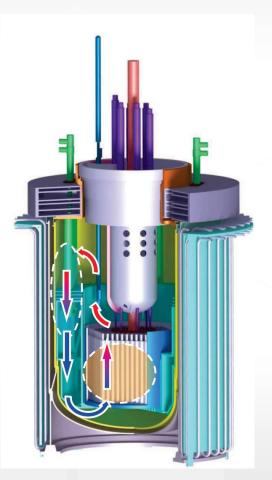

simple and robust design,

passive safety and lifecycle requirements since early design phase

- > 950 MWt (~450 MWe)
- > Hybrid, micro-channel type heat exchangers
- > Thermal energy storage system to provide load-following

Department for Business, Energy & Industrial Strategy

Advanced Modular Reactor (AMR) Feasibility and Development Project


FALC

Recently selected as one reactor concept to be developed under Phase 2 <u>Developed with the support of Ansaldo Nucleare, ENEA, and other key UK</u> <u>organizations.</u>

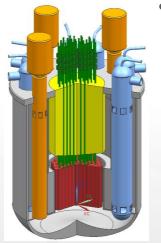
M. Caramello - ALFRED and LFR projects – ESFR SMART Spring School – March 29-31, 2021

China's CLEAR-I Reactor

Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences

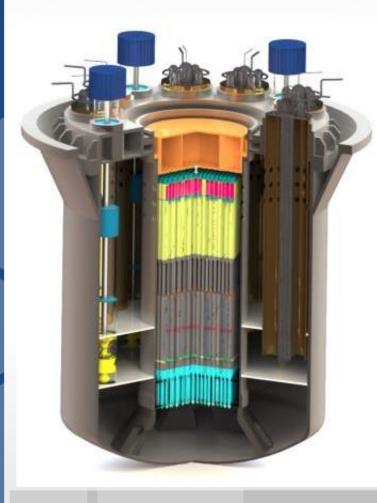
Parameters	Value
Thermal power	10 MW
Primary coolant	LBE
Fission fuel	UO ₂ (19.75%)
Driven force	Natural circulation
Subcritical mode k _{eff}	0.98
Primary coolant inventory	~700 t
Reactor core inlet/outlet temperature	260°C/390°C
Circulation height	2 m
Secondary coolant	Water
Secondary coolant pressure	4 MPa
Secondary coolant temperature	215°C/230°C
Primary heat exchanger	4 (2 independent loops)
Main vessel height	6300 mm
Main vessel diameter	4650 mm

China General Nuclear Power Group (CGN) 中 体系の CGN


CLFR series Lead/LBE cooled fast reactor design CLFR-10: LBE cooled Multifunction Micro Nuclear Power

- LBE cooled, <200t
- Multi-power-model, based on user requirements (1~20MWe)
- Battery-type core, long-core-life (10~30y), whole core replaced
- Factory-made, easy transportation (highway/railway/shipping)

CLFR-300: Lead Cooled Demonstration Reactor


- Lead cooled fast reactor with 300MWe
- Extremely safe: inherent safety, passive cooling system
- Flexible operation: high speed starting and stopping, flexible load, complement with renewables energy
- High modular level: design, construction, decommissioning

Concept design of 100 MWe LFR BLESS State Power Investment Corporation (SPIC)

M. Caramello - ALFRED and LFR projects - ESFR SMART Spring School - March 29-31, 2021

Thermal Power	300 MWt
Electric Power	120 MWe
• Fuel	UO ₂
 Enrichment 	14%/16%/19.75%
 Active zone height 	70 cm
 Active zone diameter 	242.2 cm
 Core vessel diameter 	256 cm
 No. of Fuel assemblies 	247
• No. of Fuel rods per FA	127
 Fuel rod diameter 	9.29 mm
 Linear power density 	116 W/cm
• Coolant	LBE
 Core inlet temp. 	340 °C
 Core outlet temp. 	490 °C
 Operation pressure 	0.1 MPa

SPIC

LeadCold SEALER

SEALER stands for "Swedish Advanced Lead Reactor". It also means "Person providing a stamp of quality".

FALCO

- Very small LBE-cooled reactor
- 19.75% enriched UO₂-fuel
- 3-10 MW electric
- Core life: 10-30 years
- Reactor vessel: 2.7 x 6.0 m
- Transportable to/from site
- Fuel cladding remains below 450°C

Copyright © 2021 – FALCON

ALFRED

This presentation contains proprietary and confidential data, information and formats. All rights reserved.

No part of this presentation may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of FALCON.