

Italian National Agency for New Technologies, Energy and Sustainable Economic Development

### **R&D** topics to support LFR projects

### ESFR-SMART Spring School SODIUM FAST REACTOR SAFETY



March 29-31, 2021, online Webinar Session 5-1 OTHER COOLANTS

D. Martelli (ENEA)



### GEN IV LFR

- □ Integral test & component qualification
- **Gamma** SGTR experiment
- **Coolant Chemistry**
- **FLOW Blockage experiment**
- **Coating and material characterization**



## **GEN-IV**

| Generation IV Systems              | Acronym |
|------------------------------------|---------|
| Sodium-Cooled Fast Reactor         | SFR     |
| Gas-Cooled Fast Reactor            | GFR     |
| Lead-Cooled Fast Reactor           | LFR     |
| Molten Salt Reactor                | MSR     |
| Supercritical Water-Cooled Reactor | SCWR    |
| Very-High-Temperature Reactor      | VHTR    |

Because the capability of fast reactors to meet the sustainability goal and hence to re-position nuclear energy from the present transition-energy role into an inexhaustible source of clean energy

# three out of the six systems selected by GIF (GFR, LFR and SFR) are fast reactors and

- for two systems (MSR and SCWR) studies have been carried out recently to explore the possibility of them to become fast reactors.
- For heavy liquid metal coolants (lead-bismuth alloy, lead) the stored thermal potential energy cannot be converted into kinetic energy.
- There is no significant release of energy and hydrogen in an events of coolant contacting with air, water, structural materials.
- The way to improve the NPP safety and economic performance is to implement reactor facilities with the lowest stored potential energy, where the inherent self-protection and passive safety properties are used to the maximal extent.



### **GEN-IV Lead Fast Reactor**

How lead coolant improves the reactor design?

Lead is a low-moderating medium and has a low-absorption cross section

- Fast neutron spectrum: operation as burner of MA and improve resource utilization (Sustainability)
- Long Life Core: unattractive route for the plutonium procurement (Proliferation resistance and physical protection)
- Large fuel pin lattice (opened/closed): enhanced the passive safety (Safety and Reliability)

#### Lead does not interact vigorously with air or water

- Improve Simplicity and Compactness of the Plant and reduce the risk of plant damage (Economics)
- Increase the protection against acts of terrorism (Proliferation resistance and physical protection)

## **GEN-IV Lead Fast Reactor**

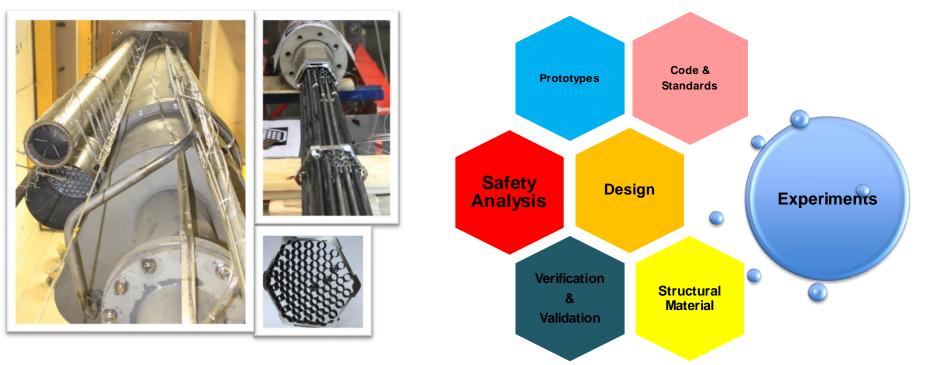
#### Main advantages and main drawbacks of Lead

| Atomic<br>mass | Absorption<br>cross-<br>section | Boiling<br>Point<br>(°C) | Chemical<br>Reactivity<br>(w/Air and<br>Water) | Risk of<br>Hydrogen<br>formation | Heat<br>transfer<br>properties | Retention<br>of fission<br>products | Density<br>(Kg/m³)<br>@400°C | Melting<br>Point<br>(°C) | Opacity | Compatibility<br>with<br>structural<br>materials |
|----------------|---------------------------------|--------------------------|------------------------------------------------|----------------------------------|--------------------------------|-------------------------------------|------------------------------|--------------------------|---------|--------------------------------------------------|
| 207            | Low                             | 1737                     | Inert                                          | Νο                               | Good                           | High                                | 10580<br>10580               | 327                      | Yes     | Corrosive                                        |

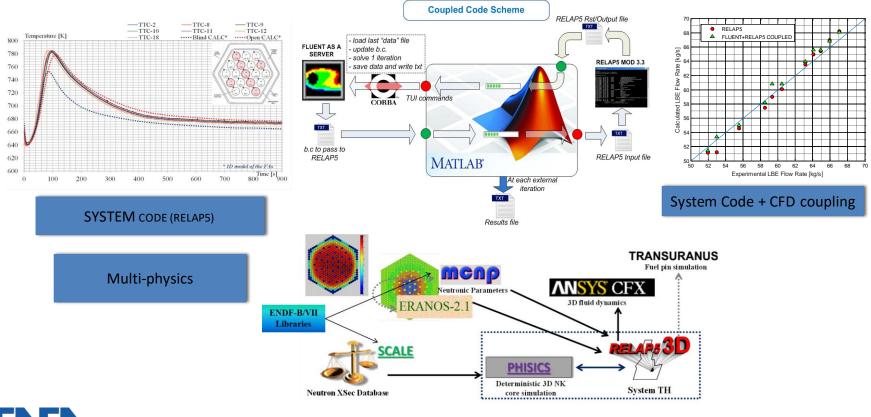
Innovation in the nuclear industry is a long and expensive process that requires several years of R&D including both numerical studies and experimental activities

One of the most important tools to develop safety systems are the **Integral Test Facilities** (ITF). They are generally developed for a reference configuration of a reactor or a system to be investigated, and are intimately related to their reference through mathematical scaling relationships.




### **GEN-IV Lead Fast Reactor**

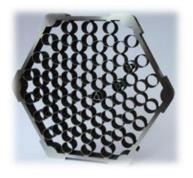
A comprehensive R&D program is necessary because of:


- The use of a new coolant and associated technology, properties, neutronic characteristics, and compatibility with structural materials of the primary system and of the core.
- Innovations which require validation programs of new components and systems (the SG and its integration inside the reactor vessel, the extended stem fuel element, the dip coolers of the safety-related DHR system, pump, OCS, ...)
- The use of advanced fuels (at least in a further stage).

# Rolw of Experiments in the R&D of LFR

• Experiments play a crucial role in the R&D of LFR




## **Experimental database for Code Validation**



ESFR-SMART Spring School-March 29-31, 2021, online Webinar Session 5-1 OTHER COOLANTS 8

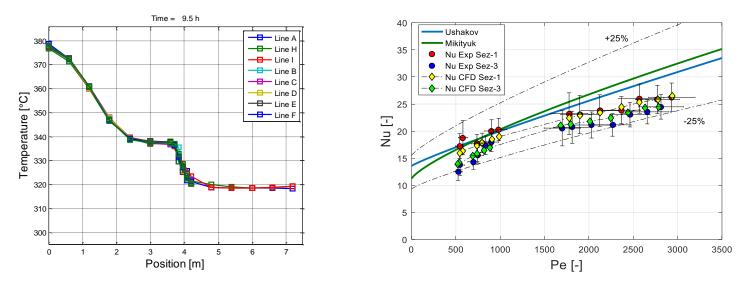
# **Integral Test & Component qualification**

- Integral Experiments (@ 1 MW)
- OCS testing in large pool
- Component qualification
- SGTR Experiments
- SG & Pump Unit Test








### **CIRCE** experimental outcomes

Thermal stratification phenomena

#### CIRCE experimental campaign. Simulation of a LOCA+LOF accident

Heat transfer in fuel pin bundle

#### CIRCE experimental campaign for the analysis of Heat transfer analysis (Nu vs Pe)



ENEN

ESFR-SMART Spring School-March 29-31, 2021, online Webinar Session 5-1 OTHER COOLANTS <sup>10</sup>

# **Component qualification**

- A new mechanical pump will be tested in CIRCE facility replacing the Gas-lift forced circulation;
- Impeller erosion and Hydraulic characteristics will be investigated

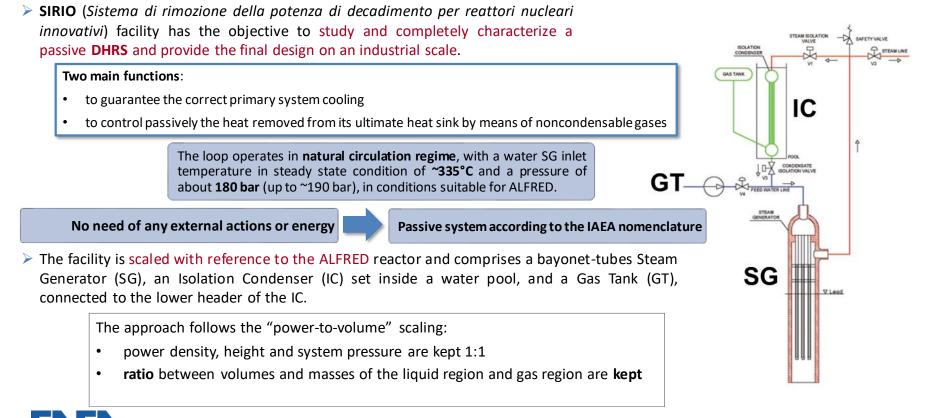




- A new prototypical **HCSG** will be tested in CIRCE facility replacing HERO-HX;
- **Qualification of the component** in terms of thermal hydraulics performances

in **steady state** and **transient abnormal conditions**; HCGS main advantages:

- Excellent heat transfer performances;
- Compact geometry.








ESFR-SMART Spring School-March 29-31, 2021, online Webinar Session 5-1 OTHER COOLANTS 11

# **Component qualification**



## **Component qualification**

#### **Preliminary Test Matrix**

On the basis of ALFRED Stage1 and Stage 2 and feedback from WP1

| -                                                 |       |        |        |        |  |
|---------------------------------------------------|-------|--------|--------|--------|--|
| Parameters                                        | Unit  | Case 1 | Case 2 | Case 3 |  |
| Water Inventory [kg]                              | [kg]  | 38     | 38     | 38     |  |
| Primary loop pressure [bar]                       | [bar] | 175    | 175    | 170    |  |
| Primary loop gas pressure [bar]                   | [bar] | 110    | 130    | 110    |  |
| Thermal power supplied during the<br>steady state | [kW]  | 55     | 55     | 27.5   |  |
| IC Valve 100-PV613 set-point                      | [bar] | 190    | 190    | 190    |  |
| IC Valve 100-PV615 delay                          | [s]   | 60     | 60     | 60     |  |
| Orifice diameter                                  | [mm]  | 5      | 5      | 5      |  |

Development of a numerical model using the thermalhydraulic system code RELAP5-3D

Simulation of the facility operation in both steady state and transient regimes

Analysis of the numerical results achieved from the pretests. Assessment of the thermal-hydraulic behavior of the system and comparison with the expected results

| Expected Phenomena                   | Conceptual Design | Detailed design |
|--------------------------------------|-------------------|-----------------|
| Control of the pressure              | ✓                 | ✓               |
| Migration of non-condensable gases   | ✓                 | ✓               |
| Power balance                        | $\checkmark$      | ✓               |
| Regeneration inside the bayonet tube | ✓                 | ✓               |
| Modulation of the power removed      | ✓                 | ✓               |
| Long term cooling                    | ✓                 | ✓               |

Experimental tests suitable for system thermal-hydraulic codes validation

ESFR-SMART Spring School-March 29-31, 2021, online Webinar Session 5-1 OTHER COOLANTS <sup>13</sup>

• 4 SGTR runs (pressure wave propagation, cover gas pressurization, domino effect, vapour flow path, safety guard devices, impurities formation, LBE particulate discharge)

• 4 tube bundles (SGTR-A,-B,-C and -D) 31 tubes, full scale portions of the PHX tube bundle

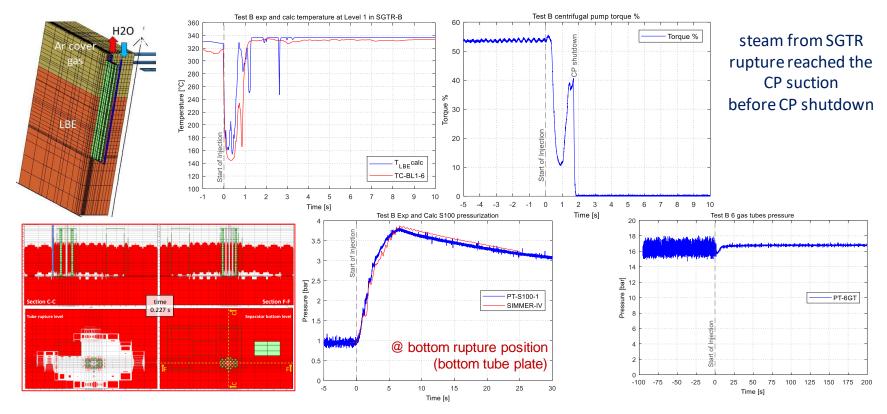
|        |   | $\sum$ |      |
|--------|---|--------|------|
| SGTR-B | B | B      | TR-D |
| SGTR-A | M |        | TR-D |

| Water injection in LBE   |                            |  |  |  |
|--------------------------|----------------------------|--|--|--|
| Т <sub>н20</sub> = 200°С | P <sub>H2O</sub> = 16 bar  |  |  |  |
| T <sub>LBE</sub> = 350°C | P <sub>COVER</sub> = 1 bar |  |  |  |

2 rupture positions **B** and **M**: Bottom **B** (SGTR-B and -D) Middle **M** (SGTR-A and -C)

Highly instrumented TS: 200 TCs (45 in each SGTR-x, ) (50 Hz) H2O ultrasonic flowmeter (15 Hz) H2O level meter (1 Hz) 8 fast pressure transmitters (1 kHz) 12 bubble tubes (1 Hz / kHz) 30 strain gages (10 kHz) 2 LBE Venturi flow meters (1 Hz)

|   | Test matrix                                           | Test #1<br>SGTR-A | Test #2<br>SGTR-C | Test #3<br>SGTR-B | Test #4<br>SGTR-D |
|---|-------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|
|   | LBE temperature [°C]                                  | 350               | 350               | 350               | 350               |
|   | LBE cover gas pressure [bar]                          | 0.05              | 0.05              | 0.05              | 0.05              |
|   | LBE flow rate (kg/s)                                  | 60-65             | 75                | 80                | 75                |
|   | Water temperature [°C]                                | 182               | 190               | 192               | 195               |
|   | Water pressure [bar]                                  | 16.3              | 17                | 16.5              | 16.9              |
|   | Water flow rate (g/s)                                 | 65                | 74                | 73                | 72                |
|   | Centrifugal pump head<br>[bar]                        | 2                 | 2.2               | 3.1               | 2.7               |
|   | Rupture position                                      | Middle            | Middle            | Bottom            | Bottom            |
|   | Rupture occurrence in right position (by TC analysis) | Yes               | Yes               | Yes               | Yes               |
| 、 | Injection time [s]                                    | 5                 | 5                 | 5                 | 5                 |
| ) | Max water mass flow rate<br>[g/s]                     | 120               | 130               | 130               | 135               |
|   | Max CIRCE pressurization [bar]                        | 2.6               | 2.7               | 3.6               | 3.7               |
|   | Rupture disc activation                               | Yes               | Yes               | No                | No                |
|   | LBE in 3/4 inch discharge<br>line                     | No                | No                | Yes               | Yes               |







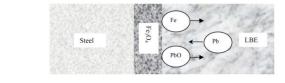

ENEL

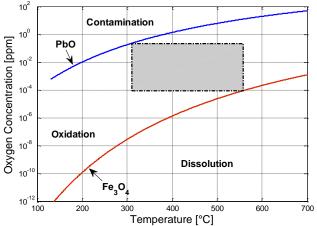
ESFR-SMART Spring School-March 29-31, 2021, online Webinar Session 5-1 OTHER COOLANTS <sup>15</sup>

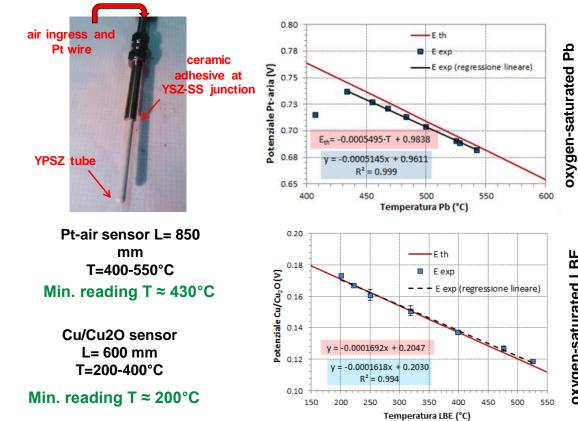


ENEL

ESFR-SMART Spring School-March 29-31, 2021, online Webinar Session 5-1 OTHER COOLANTS <sup>16</sup>





ESFR-SMART Spring School-March 29-31, 2021, online Webinar Session 5-1 OTHER COOLANTS <sup>17</sup>

## **Coolant chemistry**

Lead reducing iron oxide film and iron reforming oxide formation (self-healing protective oxide film)







ESFR-SMART Spring School-March 29-31, 2021, online Webinar Session 5-1 OTHER COOLANTS Ίð

# **Coolant chemistry RACHEL Lab**

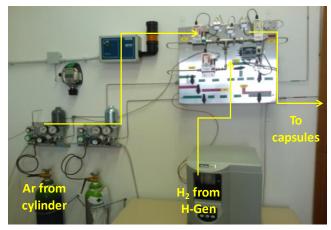
### (Reaction and Advanced CHEmistry of Lead)



capsules (small & large)





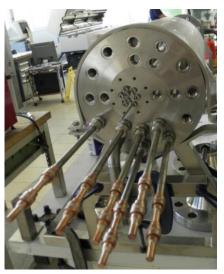

oxygen sensors

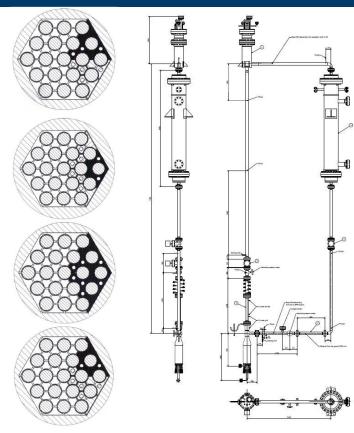


specimen

capsules for HLM chemistry (oxygen sensor testing, deoxygenation with gas) & corrosion tests of materials in Pb alloys (Pb, Pb-Bi and Pb-Li)

#### gas control system (Ar-H<sub>2</sub> injection)



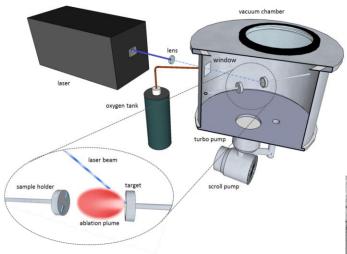



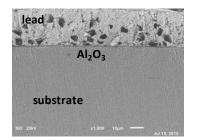

ESFR-SMART Spring School-March 29-31, 2021, online Webinar Session 5-1 OTHER COOLANTS <sup>19</sup>

# Flow Blockage experiment in NACIE Loop

| Parameter                | BFPS | ALFRED FA |
|--------------------------|------|-----------|
| d <sub>pin</sub> [mm]    | 10   | 10.5      |
| p/d                      | 1.4  | 1.32      |
| Power [kW]               | 250  | -         |
| Pin power [kW]           | 13   | -         |
| Wall heat Flux [MW/m²]   | 0.7  | 0.7-1     |
| Subch velocity [m/s]     | 0.8  | 1.1       |
| Npin                     | 19   | 127       |
| Lactive [mm]             | 600  | 600       |
| L <sub>plenum</sub> [mm] | 500  | 500       |







- 8 pull tab 'rods' will be pulled or pushed to fix the blockage configuration
- 4 blockage configurations are feasible
- Facility is filled for the experiment with fixed blockage configuration

ESFR-SMART Spring School-March 29-31, 2021, online Webinar Session 5-1 OTHER COOLANTS 20

## **Coating Development**

#### Pulsed Laser Deposition Nanoceramic Coatings (IIT & ENEA)





1 μm Al2O3 coating no buffer layer

> Corrosion tests in static Pb: 550°C -1000 h - 10<sup>-8</sup>/10<sup>-9</sup> wt.% O 1 µm Al2O3 coating

✓ high quality coatings

 $\checkmark$  custom process: bottom-up approach

✓ process at room temperature



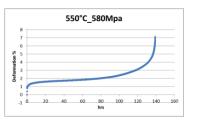
### **Material characterization**

- Corrosion test in flowing lead
- OCS testing in loop
- Component qualification





ESFR-SMART Spring School-March 29-31, 2021, online Webinar Session 5-1 OTHER COOLANTS 22


## **Material characterization**

- CREEP & SSRT test in lead a@550°C in very low Oxygen content environment (10<sup>-8</sup>)
- Optimization of the thermomechanical treatments (SEM and hardness measurements to tune Grain Size and solubilization of carbides)
- Tensile tests (improvement of high temperature properties)
- Creep tests
- Impact tests (Charpy ISO-V and KLST)
- SANS (Small Angle Neutron Scattering) measurements to correlate the distribution of the precipitates to the improvement in terms of high temperature mechanical properties





#### **Creep Machines**





#### Creep fatigue



Fretting tests in lead alloy





### Daniele Martelli daniele.martelli@enea.it



