

#### **ESFR-SMART SPRING SCHOOL**

## **OVERVIEW ON MOLTEN SALT REACTORS**

Paul Gauthé – paul.gauthe@cea.fr

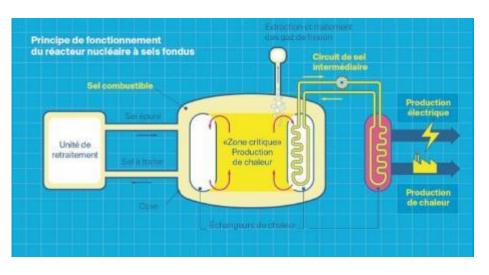
**CEA Cadarache** 

31/03/2021

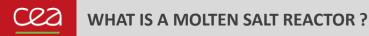
Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr



## □ What is a molten salt reactor ?


- □ International overview
- □ Assets and limits of the concept
- □ Salt selection
- □ Quick look on the french R&D program

## Conclusion


### WHAT IS A MOLTEN SALT REACTOR ?

### Reactors with a liquid fuel used also as a coolant

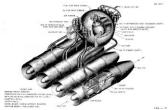
- Fast or thermal concepts
- □ Uranium/Thorium or Uranium/Plutonium fuel cycles
- Fluorides or chlorides







## **MSR HISTORY : ARE & MSRE**


- MSR concepts are imagined in the 50's
- Développed in USA for military needs
- Propulsion of bomber aircrafts
- Interests : very long flight time, power density, power variations

One prototype : ARE (Aircraft Reactor Experiment) Developped and built Operating from 3 to 12 november 1954 ... = 9 days Corrosion issues on the Inconel steel

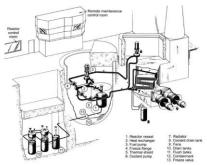


→In parallel, development of long shot balistic missiles and submarines
 →Stop of the military use for MSR but continuous effort for power generation : MSRE





ESFR-SMART Spring school - 31/03/2021 - Paul Gauthé


#### **MSRE (Molten Salt Reactor Experiment)**

Experimental reactor (7,4 MWth) Operating form 1965 to 1970 at Oak Ridge National Laboratory → New material / ARE : Hastelloy N



On this MSRE basis, a power reactor has been developed (MSBR)

| Key Features                        | ARE                                                | MSRE                                                                                  | MSBR (Design)                                                                          |
|-------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Name and Dates                      | Aircraft Reactor<br>Experiment<br>1954             | Molten Salt Reactor<br>Experiment<br>1965-1970                                        | Molten Salt Breeder Reactor<br>(design)<br>1970-1976                                   |
| Peak Power Output<br>(MWt)          | -2.5*                                              | ~8*                                                                                   | u/a                                                                                    |
| Peak Temperature (°C)               | 860                                                | 650                                                                                   | 705                                                                                    |
| Solid Moderator                     | BeO                                                | Graphite                                                                              | Graphite                                                                               |
| Fuel-Salt<br>Composition<br>(% mol) | NaF-ZrF <sub>4</sub> -UF <sub>4</sub><br>(53-41-6) | <sup>7</sup> LiF-BeF <sub>2</sub> -ZrF <sub>4</sub> -UF <sub>4</sub><br>(65-30-5-0.1) | <sup>7</sup> LiF-BeF <sub>2</sub> -ThF <sub>4</sub> -UF <sub>4</sub><br>(72-16-12-0.4) |
| Secondary Coolant                   | Na metal                                           | <sup>7</sup> LiF-BeF <sub>2</sub>                                                     | NaF-NaBF4                                                                              |



235U, then 233U then 239Pu (no thorium inside)

#### **Development stopped in the 70s : PWR & SFR development**

#### MSR operational feedback is limited to ARE & MSRE

No other MSR has been built, especially no fast MSR or chloride MSR

## □ What is a molten salt reactor ?

## □ International overview

- □ Assets and limits of the concept
- □ Salt selection
- Quick look on the french R&D program

## □ Conclusion

## Cea Bermuda Triangle of Gen 4 Reactors

### **Objectives of GenIV reactors**

The perfect GenIV reactor is safe, cheap, resistant to proliferation, sustainable, flexible and compatible with the intermittency of renewable energies everyone is trying to square the circle Sustainability Simplification Sodian-cooled Feet Reactor Fast reactors 2 (SER) Modularity 20 **GENIV AMR ?** Safety Mutualisation Economy Sustainability Economy **MSR** Security 1000 Free Righ Temperature Rearist OHIN: Listen to Core melt prevention scientists. Multiple units « No offsite radioactive Heat generation release » Grid monitoring Inherent safety .. about nuclear Advanced GenIV reactors can cower improve the acceptability of nuclear energy

# INTERNATIONAL OVERVIEW

Two mature reactor type searching for rentability : SFR et HTR

One alternative to SFR with feasibility issues : LFR

- Two reactor type searching for a new dynamics : GFR & SCWR
- One promising reactor type with challenging feasibility issues : MSR



### INTERNATIONAL OVERVIEW

### Lot of new AMR (Advanced Modular Reactor) are flowering

Amongst them, MSR systems are well represented

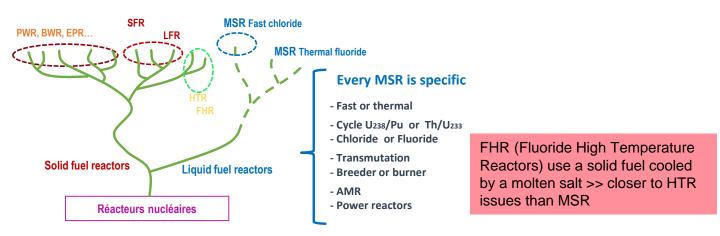
Contraction of the second

Also a growing interest in Micro-reactors, including maritime

CONC. - MARCE - - Para

|                                      | 12 mar    |           |                | - Contraction                                          | A. B.         | Bank Street | and the         | and a second     |           |
|--------------------------------------|-----------|-----------|----------------|--------------------------------------------------------|---------------|-------------|-----------------|------------------|-----------|
| Land Based Water Cooled Reactors     |           |           | Micro Reactors |                                                        | Fast Reactors |             |                 |                  |           |
|                                      |           | 7 20      | to the a       |                                                        | 5 E.F.        | Tool Dra    | A 5             | 2 Nor            |           |
| CAREM                                | SMART     | RUTA-70   | DHR400         |                                                        | IHTR          | MMR-5       | 4S              | W-LFR            | SSTAR LFR |
| ACP100                               | UNITHERM  | NuScale   | RITM-200       |                                                        | IMSBR         | MMR-10      | BREST-OD-30     | O SEALER         | URANUS    |
| CAP200                               | VK-300    | mPOWER    | NUWARD         |                                                        | eVinci        | AURORA      | SVBR-100        | LFR-AS-200       | ARC100    |
| IRIS                                 | KARAT-45  | W-SMR     | BWRX-300       |                                                        | U-Battery     | MoveluX     | EM <sup>2</sup> | LFR              | TL-X      |
| DMS                                  | KARAT-100 | SMR-160   | HAPPY200       |                                                        | et and        | Land Kr     | 1 10            | 九                |           |
| IMR                                  | ELENA     | UK-SMR    | CANDU SMR      |                                                        | STAT STATES   | - Land      | 10 A.           | A Charles States |           |
| a a contra                           |           |           | 2              |                                                        |               |             |                 |                  |           |
| High Temperature Gas-cooled Reactors |           |           |                | Marine Based Water Cooled Reactors Molten Salt Reactor |               | or          |                 |                  |           |
|                                      |           |           | 125            |                                                        |               | r f         |                 |                  |           |
| HTR-PM                               | MHR-100   | XE-100    | HTTR-30        |                                                        | ACPR50S       | VBER-300    | IMSR            | SSR-WB           | CA WB     |
| DPP-200                              | PBMR-400  | A-HTR 100 | HTR-10         |                                                        | KLT-40S       | ABV-6E      | CMSR            | SSR-TS           | KP-FHR    |
| GT-MHR                               | HTMR-100  | MMR       | RDE            |                                                        | RITM-200M     | SHELF       | THORCON         | LFTR REACTOR     | MCSFR     |
| MHR-T                                | SC-HTGR   | GTHTR300  | StarCore       |                                                        | ~             |             | FUJI ITMSF      | MK1 F            | B-FHR     |
|                                      |           |           |                |                                                        |               |             |                 |                  |           |

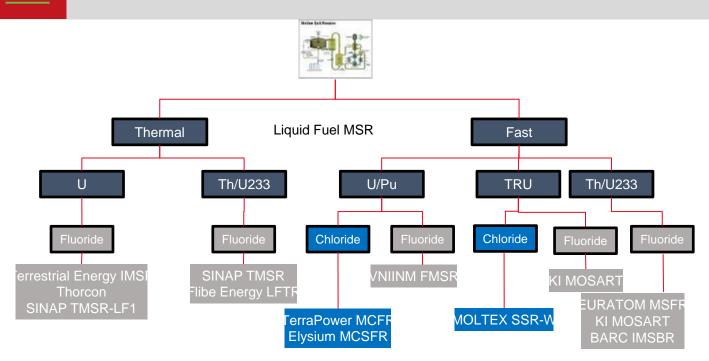
Prototype or research reactors AMR


Power > 400MWé

In bold, the more mature projects until ~ 2035

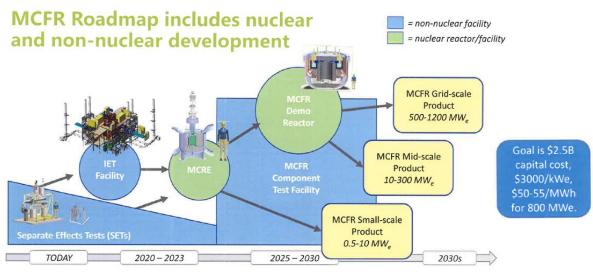
Moving panorama !

|      |                                                                                 |                                                         | mornig panolania i                                                                                                                                                                                  |  |  |  |
|------|---------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|      | Operation                                                                       | Constructio<br>n                                        | Projects                                                                                                                                                                                            |  |  |  |
| SFR  | BOR60 (RU),<br>BN600 (RU), BN800<br>(RU), CEFR (CN),<br>FBTR (IN), JOYO<br>(JP) | <b>CFR600 (CN)</b> ,<br><b>PFBR (IN)</b> , MBIR<br>(RU) | VTR (US), ARC-100 (CA), NATRIUM (US), BN1200 (RU),<br>CFR1000 (CN), ESFR-SMART (EU), JSFR (JP)                                                                                                      |  |  |  |
| HTR  | HTR-10 (CN), HTTR<br>(JP)                                                       | HTR-PM (CN)                                             | X-Energy (US), U Battery (UK), HTMR (UK) StarCore (CA),<br>STL (SA), USNC (US)                                                                                                                      |  |  |  |
| LFR  | -                                                                               | BREST-OD300<br>(RU)                                     | SVBR-100 (RU), <b>MYRRHA (BE), CLFR10 (CN), CLFR300</b><br>(CN), SSTAR (US), LFR300 (US/UK), ALFRED (EU), SEALER<br>(SW), HYDROMINE (UK)                                                            |  |  |  |
| GFR  | -                                                                               | -                                                       | ALLEGRO (V4G4), EM2 (US)                                                                                                                                                                            |  |  |  |
| MSR  | -                                                                               | -                                                       | Terrapower MCFR (US), IMSR (CA), Seaborg (DN),<br>THORCON (US), Kairos KP-FHR (US), Fuji (JP),<br>MOLTEX(UK/US), MOSART (RU), TMSR-LF (CN), TMSR-SF<br>(CN) CMSR (CN), SSR (UK), Elysium MCSFR (US) |  |  |  |
| SCWR | -                                                                               | -                                                       | CSR1000 (CN), Small-SCWr (CN), SCWR-300 (CA)                                                                                                                                                        |  |  |  |


#### MSR CLASSIFICATION



"popular concept" for investors, acceptability potential, disruptive concept, expected gains on investment costs vs unproven feasibility, material, chemical and corrosion problems


A lot of concepts, only a few startups have test loops and do certain technological developments (like Terrapower or Kairos).

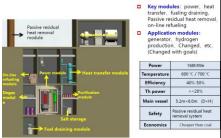
## MSR CLASSIFICATION



## CCC TERRAPOWER

- Terrapower (Bill Gates) invests more and more on the MCFR, in parallel of their SFR development (NATRIUM)
- U/PU cycle, fast spectrum, chloride salt
- Small experimental reactor (MCRE) scheduled in 2025 at INL, 90M\$ in 7 years from DOE (ARDP -Advanced Reactor Demonstration Program)
- Consortium Southern Energy / Terrapower / ORANO




**TMSR** in China

### China

Two prototypes in construction FHR: TMSR-SF1 10MW MSR : TMSR-LF1 2MW (fluoride, U-Th)

TMSR-LF1 will start in 2021

#### Development of an AMR of 168 MWé



| on-line re  | sidual heat removal<br>fueling<br>on modules: |
|-------------|-----------------------------------------------|
| generator   | , hydrogen<br>n, Changed, etc.<br>with goals) |
| Power       | 168MWe                                        |
| Temperature | 600 °C / 700 °C                               |
| Efficiency  | 40%-50%                                       |
| Th power    | >=20%                                         |
| Main vessel | 5.2m×6.0m (D×H)                               |
| Safety      | Passive residual heat<br>removal system       |
| Economics   | Cheaper than coal                             |

#### 2MW TMSR-LF1

Power

Temperature

Туре

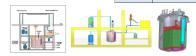
Fuels

**Residual heat** 

sy Powe

Underground construction

2MW


630 °C / 650 °C

Integrated design

LiF-BeF2-UF4-ThF4

Passive air natural circlation system

- Demonstrate concept of MSR with liquid fuel and pyroprocessing
- Demonstrate Th-U cycle and its
  - features
  - Platform for future reactors and Th-U cycle R&D



#### TMSR Campus, Wuwei







#### Modular construction and operation

Road/Railway/Ship **Container Transport** 

Power module life: 8 y (Material life) Fuel salt dry-process time: 8 y (extracting U,

On-line fueling without shut down

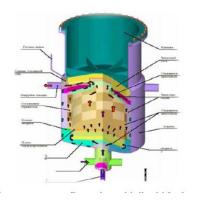
Multi-building one by one (decrease co

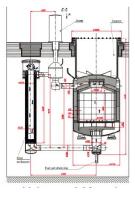
Th, removal fission products, improve fuel efficiency Other modules: changed easily

assembl

Period <36Month

**Pipeline modules** 


producing


## CCO RUSSIA MSR DEVELOPMENT

- Kurchatov institue works on the MOSART project (1000 MWe)
- Fast spectrum with fluoride salt for actinides conversion
- Material and components developpement, chemistry and processing R&D

**MOSART by Kurchatov, Russia** 

#### 2400 MWt /1000 MWe Liquid fuel Fast Initial fuel: Pu and MA trifluorides from PWR spent fuel in LiF-BeF2 U233 to be provided by Th adjustment (single and double fluid concepts studied)





Announcement by Rosatom in December 2019 of the construction of an experimental molten salt reactor near Krasnoiarsk to incinerate minor actinides ~ 2030 □ What is a molten salt reactor ?

□ International overview

□ Assets and limits of the concept

□ Salt selection

Quick look on the french R&D program

□ Conclusion

| Potential assets                                                                                                                                                                                                                                                                                                                                       | Feasibility issues                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Nuclear fuel cycle</li> <li>Multirecycling of Pu</li> <li>Minor actinides transmutation</li> <li>Intrinsic safety</li> <li>Potentially no severe accident</li> <li>Strong negative neutronic feedback</li> <li>No pressure</li> <li>Salt solidification in case of leakage</li> <li>Flexibility</li> <li>Load following capability</li> </ul> | <ul> <li>Salt chemistry</li> <li>Mastering solubility and precipitation issues</li> <li>Lack of data</li> <li>Uncertainties for operating the system</li> <li>Materials</li> <li>Corrosion</li> <li>High temperature</li> <li>Structure irradiation (no clad as 1st barrier of containment)</li> <li>Safety in operation</li> <li>Operation and maintenance processes</li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                        | - Fission products management, radioprotection                                                                                                                                                                                                                                                                                                                                   |

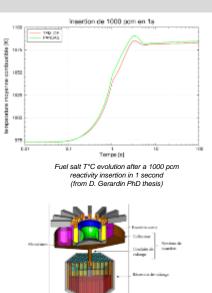
# Certain Economy

Potential advantages:

- High burnup ratio: no limitation due to irradiation damage on structure
- Simplified fuel cycle (no extraction of residual fissile material from spent fuel)
- Reactor simplicity:
  - Fuel tank without internal structures except irradiation and thermal protections of the walls
  - No mechanical devices for plant operation, except pumps
- No pressure in the circuit in normal operation and no chemical exothermic reactions with molten salts capable to generate pressure in the containment building
- High temperatures thus high thermodynamic efficiency and possibilities of heat production (or other high T°C applications)

Technical barriers to be overcome:

- Generally, low maturity level => development and qualification program to be defined
- Technology for reactor equipment
- Components and materials qualification (high T°C, irradiation, salt environment)
- Possible life duration limitation of reactor structures (irradiation damage, fission products deposition on the intermediate heat exchangers...)
- Management of salt composition and of the redox characteristics
- On-line processing scheme or processing in batch to be defined
- Definition of safety provisions to be further defined
- Needs and technology for in-service-inspection to be defined
- High melting point requiring heating systems


# Cea Safety

#### Potential advantages:

- With fast spectrum, negative feedback effect immediately occurs when the salt temperature varies: intrinsic safety advantages with regards to reactivity accidents
- No risk of fuel compaction and risk limitation for other reactivity insertion (the core contains the exact amount of fissile needed for criticality)
- Capability to remove the fuel (i.e., draining) from the critical zone
- Fission gases are continuously released from the core and stored in tanks not damaged by the core accidents
- No chemical reaction with air (no fire) and water (no hydrogen production)

#### Technical barriers to be overcome:

- No recent licensing experience
- · Prevention of corrosion, including suitable surveillance measures
- Monitoring and in-service inspection measures
- More in depth identification of risks to be further led, encompassing all types of events, all initial states (notably start-up and shutdown), and all the plant (not only the reactor zone)
- Risk of precipitation and concentration of fissile matters (including, out of the reactor zone)
- Volatility of the salts to be studied both for operation (deposits...) and safety (releases...)
- Risks associated to fission products extracted from the fuel circuit
- Further study of the absence of severe chemical reactions between salt and other materials



MSFR fuel circuit with its emergency draining tank (as proposed by CNRS and studied in SAMOFAR)

# **Environmental impact**

#### Potential advantages:

- Fast neutron spectrum and high burnup ratio drastically reduce the amount of minor actinides in the wastes, in particular with the <sup>233</sup>U/Th fuel cycle
- · Capability to burn trans-uranium elements generated in the LWR
- Fast neutron spectrum increases the amount of natural resource: quite 100% of U and 100% of Th compared to 0.7% of <sup>235</sup>U
- Fluoride and fast neutron spectrum: no wastes difficult to manage such as <sup>36</sup>Cl and graphite

#### Technical barriers to be overcome:

- Decontamination and waste packaging
- Techniques to limit the production and release of tritium to be developed
- Radiological and non radiological (incl. fluorine gas) impact of off-site installations (salt manufacturing, extraction and conditioning of fissile and fertile matters, waste processing...) to be studied also

# Proliferation resistance and physical protection

### Potential advantages:

- Limitation of transportation of fissile materials, if not operated as a breeder (or as an actinide burner)
- With <sup>233</sup>U/Th fuel cycle misappropriation is difficult (high gamma emission)
- Limited need for salt handling in fast spectrum

### Technical barriers to be overcome:

 Proliferation resistance and physical protection issues to be further examined, with adequate safeguards methods, in particular considering the location of radioactive matters in different parts of the installation

## **Ceal** Flexibility and adaptation to the electrical grid needs

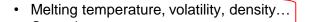
Potential advantages :

- The immediate negative feedback effect due to salt dilatation leads to very limited temperature variation even in case of large power variation need
- Control rods for adjusting the generated power could be unnecessary
- Adapted to electrical grid with a significant share of intermittent production sources (renewable)
- High temperatures thus high thermodynamic efficiency and possibilities of heat production (or others high T°C applications)

□ What is a molten salt reactor ?

□ International overview

□ Assets and limits of the concept

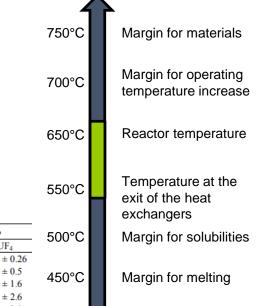

□ Salt selection

Quick look on the french R&D program

□ Conclusion

## SALT SELECTION

# Salt choice depends on reactor type, processing and safety requirements




- Corrosion
- Stability domain
- Neutronics
- · Actinides and FP solubility
- · Behaviour under irradiation
- · Interaction with air/water
- Toxicity
- · (re)processibility
- Availability/cost

| Table 2. Solubilities of PuF3 and UF4 in the FLiNaK salt system | Melting 454°C, (727K) |
|-----------------------------------------------------------------|-----------------------|
|-----------------------------------------------------------------|-----------------------|

| Temperature, K        | Individual solub | ility [4, 5], mol % | Joint solubility, mol % |                 | 50 |
|-----------------------|------------------|---------------------|-------------------------|-----------------|----|
|                       | PuF <sub>3</sub> | $UF_4$              | PuF <sub>3</sub>        | UF <sub>4</sub> | 5  |
| 550°C 823             | $6.1 \pm 0.6$    | $15.3 \pm 0.8$      | $1.16 \pm 0.14$         | $1.75 \pm 0.26$ |    |
| 600°C 873             | $11.1 \pm 1.1$   | $24.6 \pm 1.2$      | $2.9 \pm 0.3$           | $3.5 \pm 0.5$   | 4  |
| 650°C 923             | $21.3 \pm 2.1$   | $34.8 \pm 1.7$      | $13.2 \pm 1.6$          | $11.0 \pm 1.6$  | 4; |
| 700°C 973             | $32.8 \pm 3.3$   | $44.7 \pm 2.2$      | $19.1 \pm 2.3$          | $17.3 \pm 2.6$  |    |
| 750°C1023             | No data          | No data             | $21.0 \pm 2.5$          | $19.0 \pm 2.8$  |    |
| 800°C <sub>1073</sub> | No data          | No data             | $22.5 \pm 2.7$          | $20.0 \pm 3.0$  |    |

Safety issues!!!



## SALT SELECTION

Salt selection depends on the reactor objectives : U/Pu cycle vs U/Th cycle, fast vs thermal, large reactor vs SMR...

- Fluorides salts often used for thermal spectrum and/or thorium
- ightarrow Valuable feedback from the ORNL's MSRE

Chlorides salts as an interesting alternative for <u>fast spectrum</u>

- Hardening neutronic spectrum >> <u>better conversion of actinides</u>
- More suited for multirecycling of Pu (lower solubility of Pu in fluoride salts)
- 37Cl enrichment necessary but feasible

For example in the french context (closed fuel cycle, Pu multirecycling, transmutation) we focus on chlorides <u>fast MSR for actinides conversion (reducing ultimate wastes)</u>

### Investigation of NaCl-PuCl<sub>3</sub> type of salts (+ UCl<sub>3</sub>, AmCl<sub>3</sub>, MgCl<sub>2</sub>, CaCl<sub>2</sub>...)

Transmutation

Chemistry reasons

□ What is a molten salt reactor ?

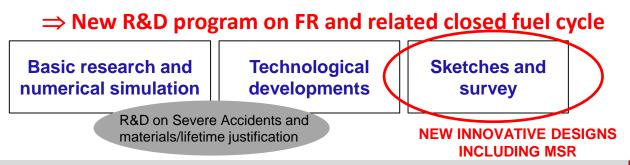
□ International overview

□ Assets and limits of the concept

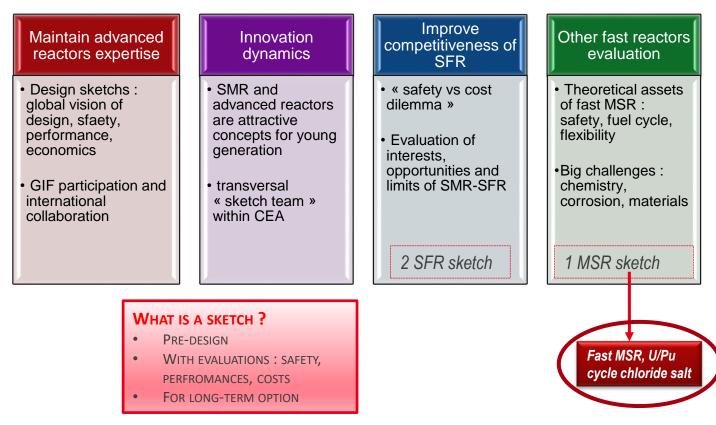
□ Salt selection

Quick look on the french R&D program

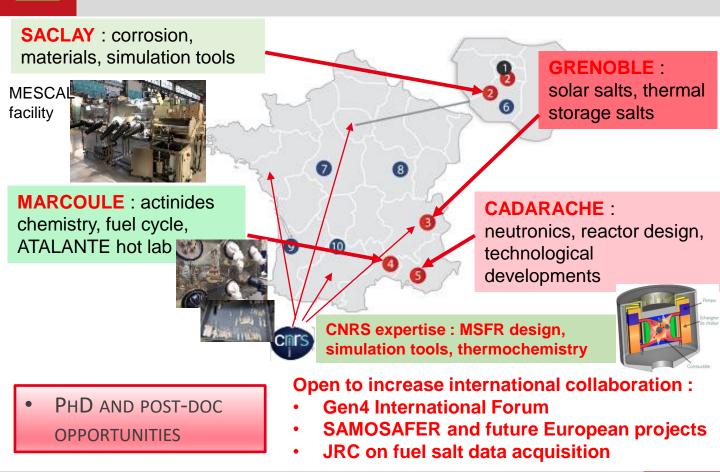
□ Conclusion


#### Closed fuel cycle is the reference strategy

U&Pu recycling in existing PWR, already deployed


Multiple recycling in PWR is considered, R&D program

R&D on Fast Reactors is still ongoing at CEA


- ightarrow Significant results and knowledge acquired from ASTRID SFR program
- ightarrow Increase the maturity and performances of SFR : safety, economy, fuel cycle
- ightarrow Opportunity to re-open R&D paths : SMR SFR and alternative technologies like MSR
- ightarrow Feasibility of actinides conversion in MSR



### **Objectives of innovative sketch project**



## FRENCH MSR R&D PROGRAM



ESFR-SMART Spring school - 31/03/2021 - PAUL GAUTHÉ

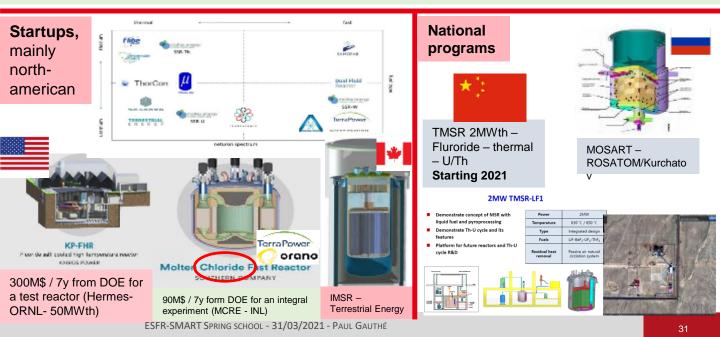
□ What is a molten salt reactor ?

□ International overview

□ Assets and limits of the concept

□ Salt selection

Quick look on the french R&D program


□ Conclusion

## C22 INTERNATIONAL OVERVIEW

**USA experience** ARE (1954) and MSRE (1965-1970) Thermal spectrum, Flibe, uranium, 7MWth



**Renewed interest in MSR since 10 years** : assets for resolving safety & waste issues, innovation attractive for investors, dozens of new concepts



## R&D NEEDS ON MSR FEASIBILITY

#### Salt chemistry

- □ Salt purification, role of oxygen, precipitation issues
- Corrosion experiments
- Material screening (including additive fabrication)
- Experimental data acquisition on salts properties (including the real salt with actinides and FP)

#### Reactor design and operation

- Neutronics design
- From primary circuit to the power conversion system
- Design of components and instrumentation
- How to operate and maintain the reactor ? What are the wastes ? Do we have proliferation issues ? Radioprotection ?

#### Simulation tools

- Isotopic & physical & chemical evolution code
- Neutronic/thermalhydraulic coupling
- Mass transfers, Fission product speciation, off-gas system...

### **C22** REAL GOAL OF GEN4 IS ACCEPTABILITY ?

#### MSR can be a « game-changer » for nuclear energy acceptability



At the same time...

Careful with false promises ! The simple, safe and cheap reactor is often a paper reactor

> Simplicity is the ultimate sophistication Léonard de Vinci

What is simple is false. What is complicated is useless. Paul Valéry

# THANK YOU FOR YOUR ATTENTION



 Contact person :
 Paul Gauthé, Innovative reactor R&D projet manager
 paul.gauthe@cea.fr

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr