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the aim to ensure that MSR technology can fully comply with the more stringent
safety requirements expected in 30 years time.
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Positioning of SAMOSAFER
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History of Euratom projects

» MOST aiming at the recovery of data and simulation tools for thermal reactor
designs focusing on validation with historic data from the MSRE.

> ALISIA resulting in the selection of the fuel salt and design choices for a
European MSR.

» EVOL focusing on design of the Molten Salt Fast Reactor (MSFR), which is now
the EU Gen-IV reactor.

» SAMOFAR focusing on the safety analysis of the MSFR and further development of
the reactor design. Several experimental setups were designed and constructed,
like SWATH-S and DYNASTY.

» SAMOSAFER expanding the experience and knowledge from previous projects with
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Molten Salt Reactor Experiment 1965-1969

See movie: http://energyfromthorium.com/2016/10/16/ornl-msre-film/
SAMSESAFER

MSRE pump startup
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MSRE pump startup
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MSR research themes

Materials

Salt processing sal Reactor design
Safety analysis Safety analysis
Redox control Salt properties

Emergency Dump Tanks
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Reference design MSFR

Thermal power 3000 MWth

Mean fuel salt temperature | 725 °C

Fuel salt temperature rise in

o
the core CO0RC

LiF-ThF,-UF, (77.5-20-2.5 mol%)

Fuel molten salt - Initial LiF-ThE,-UF,-(TRU)F, with

SR (77.5-6.6-12.3-3.6 mol%) Collector
Fuel salt melting point 585 °C
Fuel salt density 4.1 g/cm? Draini
4————— Draining
Fuel salt dilation coefficient | 8.8210%/°C Opening devices @
P g - shaft

Fertile blanket salt - Initial
composition

el it (el 11 O Nl Draining

state)
Tank

LiF-ThF, (77.5%-22.5%)

Total feedback coefficient -5 to -8 pcm/K

Diameter: 2.26 m

Core dimensions Height: 2.26m

Fuel salt volume 18 m3 (50% in the core)
Blanket salt volume 7.3 m?
SA" Total fuel salt cycle 3.9s
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Fuel storage
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MSR dassification

Graphite-moderated & fluoride salt
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Diversity Molten salt reactor concepts
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Fuel
Treatment
Unit

Small modular units Large single unit

Thermal spectrum Fast spectrum

One-fluid core Two-fluid core-blanket

Uranium-plutonium Thorium-uranium

Batch-wise refueling Continuous refueling

No fuel processing Continuous processing

. Integral cooling Loop cooling

SAMS£$SAFER

Peculiarities of Molten Salt Reactors

Molten fuel salt acts as fuel and coolant->no DNB, etc

Part the fuel salt is outside core region—=>low B«

Primary circuit is radioactive> modularity, robotization, maintenance, etc
Homogeneous fuel load and uniform fuel burnup

No need to control power distribution and flux shape

Fuel processing and (un)loading during operation

Strong negative feedback based on fuel salt expansion—>easy load following
Safety philosophy is based on fuel salt expansion and flow

Fuel salt retention upon heating important as well as precipitation upon cooling
Fuel salts typically have low heat conduction (high Prandtl)—>solidification
Emergency shut-down by draining the salt (passively or active)

AN N N N N N N N NN
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Phenomena investigated

Freezing of the fuel salt against cold walls and subsequent remelting;
Internal heating of the salt causing lower natural circulation and local overheating;
Overheating of the fuel salt in the core during transients and in the drain tanks;

Effects of transients on the thermo-mechanical integrity of the primary circuit;

vV v.v. v .Yy

Redistribution of the source term in the processing unit via gas bubbling, fluorination
and chemical extraction leading to changes in chemistry and mobility of radionuclides.

v

Thermo-chemical modelling to evaluate the fission products retention properties, and
the effects of various products on the thermo-physical properties (melting point, heat
capacity, vapour pressure, viscosity, thermal conductivity, etc);

Radiative heat transfer to calculate accurately decay heat removal;
Predictive reactor control strategies to reduce the number of draining events;

Redox control of the fuel salt to avoid corrosion in the primary circuit;

vV v.v Vv

Reactor scaling effects on the safety of nuclear reactors in general;

» Uncertainty quantification methods based on non-intrusive PCE and ROM methods.

SAME:SAFER

SAMOSAFER contents

1. Investigating the existing defence-in-depth safety approach to MSR.
2. Developing a rigorous and well-established simulation code suite through:
» Developing theoretical models of physics and thermo-chemical phenomena relevant to safety;
» Developing simulation models and tools to be included in cutting-edge computation codes;
» Coupling existing computation codes to deliver an integral simulation approach;
» Simulation models for the computation of multi-physics phenomena in existing codes.
3. Developing experimental setups for the validation of simulation models:
» Developing experimental facilities for validation of theory and models and for validation;
» Modifying and applying existing experimental facilities to generate data for validation;
» Using experimental setups and computational schemes to generate data.
4. Design and demonstration of barriers for severe accidents in MSR.
5. Update of the MSFR design with all improvements from these studies.
6. Attracting and educating students, postdoctoral researchers and trainees.

7. Develop and train a software user community.
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Safety approach

Functional analysis of the system,
identification of hazards and PIE
during the preliminary stages of

design (bottom-up)

1
Functional Failure Mode
and Effect Analysis
\ (FFMEA)

Lines of Defences (LoD)

!

Master Logic Diagram

(MLD) Set of the most severe Guarantee that every accidental
elementary failures that evolution of the reactor state is
\L compromise plant functions and always prevented by a minimum
induce consequences of safety set of homogenous (in number
Identification the hazards and concern and quality) safety features

possible initiating events of a
nuclear plant, through a
deductive approach (top-down)

A. C. Uggenti, D. Gérardin et al, "Preliminary functional safety assessment for molten salt fast
reactors in the framework of the SAMOFAR project”, PSA 2017 International Topical Meeting, Pittsburgh,

N USA, 2017
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Simulation models

Materials
Solver neutron n(x,y,z,E, H,W,f)
——Geometry —— . » — = . [
ransport €qs. —

Chemistry pOTTEd (x3,2,1)

Temperature

distribution

Fluid flow

SAMZSAFER Fuel depletion




MSFR Multiphysics calculations
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MSFR Transient analysis ULOFF
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Fig. 5.14. ULOFF: evolution of the distributions of temperature and velocity along the
reactor vertical lllill-])lulll'. The latter ])lul uses a ]u;;zll'iﬂlmi(' scale to lll;l;.',llif)‘ the low

velocity magnitudes at the end of the transient.
Marco Tiberga, TU Delft
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Simulation models
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Experimental setups

» DYNASTY: This is a 10 meters high facility at POLIMI to study the flow dynamics of internally heated
salts. Two versions exist: a single loop system and two connected loops. The latter setup simulates
the primary salt circuit (core region) connected to the salt flow in the intermediate circuit. DYNASTY
is fully instrumented and can be used to study decay heat removal from the core region by natural
circulation. DYNASTY has been modified in the SAMOFAR project to fully meet the needs of the MSR;

» High Flux Reactor: This 40 MWth material testing reactor is being used to irradiate samples of fuel
salt containing ThF, in LiF for 2 years. Analysis in the hot cell laboratories of NRG and at JRC-
Karlsruhe, focusing on the fission product composition, redox potential, and the interactions
between the fuel salt and the graphite crucibles and between the fuel salt and metal encapsulation;

» SWATH-S: This is a facility at CNRS consisting of two vessels of which one is filled with liquid salt
(FLiNaK). By pressure the salt can flow from one vessel to the other, thereby passing an
experimental station in a glovebox. The experimental station can be adopted to the needs of the
experiments, like the measurement of flow and temperature profiles of the salt in turbulent and
laminar conditions, and freezing phenomena of the salt against cold walls.

SAM & SAFER

SWATH-S facility

Global performance :

- Salt: FLiNaK

- Total volume : 50 |

- Service temperature
range : 550°c => 700°c

Velocity (m/s) | Flow rate Time
20 mm inner (I/min) (minutes)
pipe diameter

1.88 26.5
0.3 5.65 8.8
0.5 9.42 5.3

CNRS, Grenoble
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eDYNASTY coupled facility

Intermediate
heat
exchanger

Primary loop Secondary loop
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POLIMI
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Structure and work packages
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d— WP2: Fuel salt retention

 WP3:Source term distribution and mobility

WP4: Fuel salt confinement oy

WP1: Safety requirements and Risk
identification

<~ WPS5: Heat removal and temperature control
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WP7: Education and Training &
Dissemination and Exploitation

3

'WP8: Project management
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Education and Training

» Education of bachelor, master and PHD students
» Student mobility scheme

» Webinars on MSR neutronics, thermal-hydraulics,
chemistry, experiments, ...

» Basic principle software simulator for training
» Summer school September 2021-Spring 2022
» Young-MSR conference Spring 2022

Collaboration
and joint efforts
appreciated

» Stakeholder workshop Summer 2023
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]
Molten Salt Reactors
and Thorium Energy
Edited by Thomas J. Dolan
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